Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018;26(3):379-393.
doi: 10.3233/XST-17324.

Wavelet-based joint CT-MRI reconstruction

Affiliations

Wavelet-based joint CT-MRI reconstruction

Xuelin Cui et al. J Xray Sci Technol. 2018.

Abstract

Since their inceptions, the multimodal imaging techniques have received a great deal of attention for achieving enhanced imaging performance. In this work, a novel joint reconstruction framework using sparse computed tomography (CT) and magnetic resonance imaging (MRI) data is developed and evaluated. CT and MRI images are synchronously acquired and registered from a hybrid CT-MRI platform. Because image data are highly undersampled, analytic methods are unable to generate decent image quality. To overcome this drawback, we resort to the compressed sensing (CS) techniques, which employ sparse priors that result from an application of a wavelet transform. To utilize multimodal information, projection distance is introduced and is tuned to tailor the texture and pattern of the final images. Specifically, CT and MRI images are alternately reconstructed using the updated multimodal results that are calculated at the latest step of the iterative optimization algorithm. The method exploits the structural similarities shared by the CT and MRI images to achieve better reconstruction quality. The good performance of the proposed approach is demonstrated on a pair of undersampled CT and MRI body images. Clinical CT and MRI images are tested with the joint reconstruction, the analytic reconstruction, and the independent reconstruction which does not uses multimodal imaging information. Results show that the proposed method improves about 5dB in signal to noise ratio (SNR) and nearly 10% in structural similarity measure comparing to independent reconstruction. It offers similar quality with fully sampled analytic reconstruction with only 20% sampling rate for CT and 40% for MRI. Structural similarities and correlations residing in images from different modalities are useful to mutually promote the quality of image reconstruction.

Keywords: Compressed sensing; Image reconstruction; Multimodal imaging.

PubMed Disclaimer

Similar articles

Cited by