Modeling sequential context effects in diagnostic interpretation of screening mammograms
- PMID: 29564370
- PMCID: PMC5858736
- DOI: 10.1117/1.JMI.5.3.031408
Modeling sequential context effects in diagnostic interpretation of screening mammograms
Abstract
Prior research has shown that physicians' medical decisions can be influenced by sequential context, particularly in cases where successive stimuli exhibit similar characteristics when analyzing medical images. This type of systematic error is known to psychophysicists as sequential context effect as it indicates that judgments are influenced by features of and decisions about the preceding case in the sequence of examined cases, rather than being based solely on the peculiarities unique to the present case. We determine if radiologists experience some form of context bias, using screening mammography as the use case. To this end, we explore correlations between previous perceptual behavior and diagnostic decisions and current decisions. We hypothesize that a radiologist's visual search pattern and diagnostic decisions in previous cases are predictive of the radiologist's current diagnostic decisions. To test our hypothesis, we tasked 10 radiologists of varied experience to conduct blind reviews of 100 four-view screening mammograms. Eye-tracking data and diagnostic decisions were collected from each radiologist under conditions mimicking clinical practice. Perceptual behavior was quantified using the fractal dimension of gaze scanpath, which was computed using the Minkowski-Bouligand box-counting method. To test the effect of previous behavior and decisions, we conducted a multifactor fixed-effects ANOVA. Further, to examine the predictive value of previous perceptual behavior and decisions, we trained and evaluated a predictive model for radiologists' current diagnostic decisions. ANOVA tests showed that previous visual behavior, characterized by fractal analysis, previous diagnostic decisions, and image characteristics of previous cases are significant predictors of current diagnostic decisions. Additionally, predictive modeling of diagnostic decisions showed an overall improvement in prediction error when the model is trained on additional information about previous perceptual behavior and diagnostic decisions.
Keywords: cognitive bias; context effect; eye tracking; mammography; perceptual behavior.
Figures
References
-
- Adolphs R., “The neurobiology of social cognition,” Curr. Opin. Neurobiol. 11(2), 231–239 (2001).COPUENhttps://doi.org/10.1016/S0959-4388(00)00202-6 - DOI - PubMed
-
- Simon H. A., Kotovsky K., “Human acquisition of concepts for sequential patterns,” Psychol. Rev. 70(6), 534–546 (1963).PSRVAXhttps://doi.org/10.1037/h0043901 - DOI - PubMed
-
- Beckstead J. W., “Modeling sequential context effects in judgment analysis: a time series approach,” Judgment Decis. Making 3(7), 570–584 (2008).
-
- Beckstead J. W., et al. , “Stimulus sequence features influence physicians’ response tendencies in radiological image interpretation,” Appl. Cognit. Psychol. 27(5), 625–632 (2013).ACPSEDhttps://doi.org/10.1002/acp.2941 - DOI
-
- Frederick P. D., et al. , “The influence of disease severity of preceding clinical cases on pathologists’ medical decision making,” Med. Decis. Making 37(1), 91–100 (2016).MDMADEhttps://doi.org/10.1177/0272989X16638326 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
