Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 22;18(1):34.
doi: 10.1186/s12862-018-1132-2.

RNA sequencing of early round goby embryos reveals that maternal experiences can shape the maternal RNA contribution in a wild vertebrate

Affiliations

RNA sequencing of early round goby embryos reveals that maternal experiences can shape the maternal RNA contribution in a wild vertebrate

Irene Adrian-Kalchhauser et al. BMC Evol Biol. .

Abstract

Background: It has been proposed that non-genetic inheritance could promote species fitness. Non-genetic inheritance could allow offspring to benefit from the experience of their parents, and could advocate pre-adaptation to prevailing and potentially selective conditions. Indeed, adaptive parental effects have been modeled and observed, but the molecular mechanisms behind them are far from understood.

Results: In the present study, we investigated whether maternal RNA can carry information about environmental conditions experienced by the mother in a wild vertebrate. Maternal RNA directs the development of the early embryo in many non-mammalian vertebrates and invertebrates. However, it is not known whether vertebrate maternal RNA integrates information about the parental environment. We sequenced the maternal RNA contribution from a model that we expected to rely on parental effects: the invasive benthic fish species Neogobius melanostomus (Round Goby). We found that maternal RNA expression levels correlated with the water temperature experienced by the mother before oviposition, and identified temperature-responsive gene groups such as core nucleosome components or the microtubule cytoskeleton.

Conclusions: Our findings suggest that the maternal RNA contribution may incorporate environmental information. Maternal RNA should therefore be considered a potentially relevant pathway for non-genetic inheritance. Also, the ability of a species to integrate environmental information in the maternal RNA contribution could potentially contribute to species fitness and may also play a role in extraordinary adaptive success stories of invasive species such as the round goby.

Keywords: Neogobius melanostomus; maternal contribution; non-genetic inheritance; parental effects; short term adaptation.

PubMed Disclaimer

Conflict of interest statement

Ethics approval

Animals were obtained with the approval of local fishery authorities under permission # 2–3–6-4-1 from the office for environment and energy Basel.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Sampling, sequencing and verification of the Neogobius melanostomus maternal RNA contribution. a, Visualization of embryonic development by actin staining. 2-cell, 8-cell, > 32-cell, and organogenesis stage are depicted. Scale bar: 1 mm. See Additional file 1: Figure S1 for a full panel of developmental stages. b, Sampling. The ascending line represents water temperature at the sampling site. Dashed lines and dots indicate sampling dates and samples, respectively. The temperature curve during five days before each sampling date is colored orange. c, Developmental stage of sequenced samples in relation to the mean water temperature during five days before oviposition. Each dot represents a sample. d, The round goby orthologs of maternally contributed genes in the zebrafish [49] are highly expressed in pre-MZT N. melanostomus embryos
Fig. 2
Fig. 2
The expression of maternally contributed RNAs correlates with maternally experienced mean, maximum, and minimum temperature, but not with control parameters. a, Density plot of the Spearman correlation coefficients calculated between expression level and indicated parameters. b, Barplot showing the number of open reading frames that correlate with mean temperature experienced by the mother before oviposition (green) or with cleavage stage (black) at the indicated correlation values
Fig. 3
Fig. 3
The maternal temperature experience before oviposition has a global effect on the maternal RNA contribution. a, Variance explained by individual principal components. b, PC1 correlates with the mean temperature experienced by the mother. c, PC1 and PC2 together explain mean temperature experienced by the mother. d, Cleavage progress, genetic dissimilarity, or temperature interval experienced by the mother are independent from PC1 and PC2
Fig. 4
Fig. 4
Functional analysis of the temperature response. a, Correlation analysis and PCA identify overlapping sets of genes. b, Open reading frames which react to higher temperature with increased expression are more conserved. c, Pathways and functions of temperature sensitive maternal genes, manual annotation. Dot size corresponds to the number of genes with that function. d, GO term clusters identified among temperature sensitive maternal genes by the DAVID annotation tool. Dot size corresponds to DAVID enrichment score

Similar articles

Cited by

References

    1. Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SGP, et al. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res. 2011;21(8):1328–1338. doi: 10.1101/gr.116012.110. - DOI - PMC - PubMed
    1. Abrams EW, Mullins MC. Early zebrafish development: It’s in the maternal genes. Curr Op Gen Dev. 2009;19(4):396–403. doi: 10.1016/j.gde.2009.06.002. - DOI - PMC - PubMed
    1. Adrian-Kalchhauser I, Hirsch PE, Behrmann-Godel J, et al. The invasive bighead goby Ponticola kessleri displays large scale genetic similarities and small scale genetic differentiation in relation with shipping patterns. Mol Ecol. 2016;25(9):1925–1943. doi: 10.1111/mec.13595. - DOI - PubMed
    1. Aken BL, Achuthan P, Akanni W, et al. Ensembl 2017. Nucleic Acids Res. 2017;45(D1):D635–D642. doi: 10.1093/nar/gkw1104. - DOI - PMC - PubMed
    1. Audic Y, Omilli F, Osborne HB. Postfertilzation deadenylation of mRNAs in Xenopus Laevis embryos is sufficient to cause their degradation at the blastula stage. Mol Cell Biol. 1997;17(1):209–218. doi: 10.1128/MCB.17.1.209. - DOI - PMC - PubMed

Publication types

LinkOut - more resources