Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 22;16(1):26.
doi: 10.1186/s12958-018-0341-2.

The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells

Affiliations

The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells

Kristian Leisegang et al. Reprod Biol Endocrinol. .

Abstract

Background: Cytokines and hormones, including insulin, are known to modulate the hypothalamic-pituitary-testes axis and steroidogenesis, both centrally and peripherally. In the context of chronic inflammation and hyperinsulinaemia mediating male hypogonadism associated with obesity, metabolic syndrome and type 2 diabetes mellitus, these mechanisms are poorly understood and the impact of cytokines and insulin on Leydig cell steroidogenesis has not been fully elicited. This study aimed to further investigate the in vitro impact of TNFα, IL1ß, IL6, IL8 and insulin on Leydig cell function and steroidogenesis.

Methods: hCG-stimulated TM3 Leydig cells were exposed to various concentrations of TNFα, IL1ß, IL6, IL8 (100 ng/ml, 10 ng/ml, 1 ng/ml and 0.1 ng/ml) and insulin (10 ng/ml, 1 ng/ml, 0.1 ng/ml and 0.01 ng/ml) in optimal cell culture conditions over 48 h. Cell viability (XTT) and testosterone and progesterone concentrations (ELISA) were assessed using standardised laboratory techniques.

Results: TNFα significantly decreased cell viability and progesterone and testosterone concentrations in a dose-dependent relationship. IL1ß and IL6 had a subtle but significant negative effect on cell viability and testosterone concentrations, with a marked significant decrease in progesterone concentration at all concentrations investigated. IL8 showed an increase in cell viability, with no significant effect on testosterone concentrations alongside a significant decrease in progesterone concentrations. Insulin significantly increased cell viability and testosterone concentrations in a dose dependent relationship, but interestingly significantly decreased progesterone concentrations.

Conclusions: The inflammatory cytokines TNFα, IL1β and IL6 cause a dose dependent decline in steroidogenesis in TM3 Leydig cells. These results suggest that chronic inflammation may downregulate steroidogenesis in males via direct modulation of Leydig cell function. However, IL8 may stimulate TM3 Leydig cell growth. Insulin is associated with a dose-dependent increase in testosterone synthesis, with a significant decline in progesterone synthesis. With the phenomenon of insulin resistance, the literature is unclear on the potential role of hyperinsulinaemia in steroidogenesis. Further studies are warranted in order to fully elicit the molecular mechanisms and interactions of these molecules on male steroidogenesis.

Keywords: Cytokines; IL1β; IL6; IL8; Insulin; Leydig cells; Progesterone; Steroidogenesis; TNFα; Testosterone.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests in the study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Cell viability (a), testosterone (b) and progesterone concentration (c) results for TM3 cell exposure to various concentrations of tumour necrosis factor-alpha (TNFα). All tested parameters significantly decreased for all concentrations of TNFα. For testosterone and progesterone results, ANOVA repeated measures analysis of variance was significant (P < 0.001), as was the one-way analysis of variance (P < 0.001)
Fig. 2
Fig. 2
Cell viability (a), testosterone (b) and progesterone (c) results for TM3 cell exposure to various concentrations of interleukin 1-beta (IL1β). All parameters tested significantly decreased for all concentrations of IL1β. For testosterone, ANOVA repeated measures analysis of variance was not significant (P = 0.159), nor was the ANOVA one-way analysis of variance (P = 0.256). For progesterone, ANOVA repeated measures analysis of variance was significant (P < 0.001), as was the one-way analysis of variance (P < 0.001)
Fig. 3
Fig. 3
Cell viability (a), testosterone (b) and progesterone (c) results for TM3 cell exposure to various concentrations of interleukin 6 (IL6). All parameters significantly decreased for all concentrations of IL6. For testosterone and progesterone, ANOVA repeated measures analysis of variance was significant (P < 0.0001), as was the one-way analysis of variance (P < 0.001)
Fig. 4
Fig. 4
Cell viability (a), testosterone (b) and progesterone (c) results for TM3 cell exposure to various concentrations of interleukin 8 (IL8). Cell viability was significantly increased for all concentrations, while testosterone concentrations did not significantly change. Contrary, progesterone concentrations declined significantly. For testosterone, ANOVA repeated measures analysis of variance was not significant (P = 0.052), nor was the ANOVA one-way analysis of variance (P = 0.187). For progesterone, ANOVA repeated measures analysis of variance was significant (P = 0.002), as was the one-way analysis of variance (P < 0.001)
Fig. 5
Fig. 5
Cell viability (a), testosterone (b) and progesterone (c) results for TM3 cell exposure to various concentrations of insulin. Cell viability was significantly increased at 0.01, 0.1 and 1 ng/ml insulin. Testosterone concentrations were significantly increased for all concentrations, while progesterone concentrations significantly declined. For testosterone, ANOVA repeated measures analysis of variance was significant (P = 0.015), as was the one-way analysis of variance (P < 0.001). For progesterone, ANOVA repeated measures analysis of variance was statistically significant (P < 0.001), as was the one-way analysis of variance (P < 0.001)

Similar articles

Cited by

References

    1. Bornstein SR, Rutkowski H, Vrezas I. Cytokines and steroidogenesis. Mol Cell Endocrinol. 2004;215:135–141. doi: 10.1016/j.mce.2003.11.022. - DOI - PubMed
    1. Svechnikov KV, Sultana T, Söder O. Age-dependent stimulation of Leydig cell steroidogenesis by interleukin-1 isoforms. Mol Cell Endocrinol. 2001;182:193–201. doi: 10.1016/S0303-7207(01)00554-8. - DOI - PubMed
    1. Hales DB, Diemer T, Hales KH. Role of cytokines in testicular function. Endocrine. 1999;10:201–217. doi: 10.1007/BF02738619. - DOI - PubMed
    1. Pasquali R, Casimirri F, De Iasio R, Mesini P, Boschi S, Chierici R, Flamia R, Biscotti M, Vicennati V. Insulin regulates testosterone and sex hormone-binding globulin concentrations in adult normal weight and obese men. J Clin Endocrinol Metab. 1995;80:654–658. - PubMed
    1. Tremellen K, McPhee N, Pearce K, Benson S, Schedlowski M, Engler H. Endotoxin initiated inflammation reduces testosterone production in men of reproductive age. Am J Physiol Endocrinol Metab. 2017; 10.1152/ajpendo.00279.2017. - PMC - PubMed

MeSH terms