Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 21;97(6):1267-1288.
doi: 10.1016/j.neuron.2018.02.027.

Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

Aude Nicolas  1 Kevin P Kenna  2 Alan E Renton  3 Nicola Ticozzi  4 Faraz Faghri  5 Ruth Chia  1 Janice A Dominov  2 Brendan J Kenna  2 Mike A Nalls  6 Pamela Keagle  2 Alberto M Rivera  1 Wouter van Rheenen  7 Natalie A Murphy  1 Joke J F A van Vugt  7 Joshua T Geiger  8 Rick A Van der Spek  7 Hannah A Pliner  1 Shankaracharya  2 Bradley N Smith  9 Giuseppe Marangi  10 Simon D Topp  9 Yevgeniya Abramzon  11 Athina Soragia Gkazi  9 John D Eicher  12 Aoife Kenna  2 ITALSGEN ConsortiumGabriele Mora  13 Andrea Calvo  14 Letizia Mazzini  15 Nilo Riva  16 Jessica Mandrioli  17 Claudia Caponnetto  18 Stefania Battistini  19 Paolo Volanti  13 Vincenzo La Bella  20 Francesca L Conforti  21 Giuseppe Borghero  22 Sonia Messina  23 Isabella L Simone  24 Francesca Trojsi  25 Fabrizio Salvi  26 Francesco O Logullo  27 Sandra D'Alfonso  28 Lucia Corrado  28 Margherita Capasso  29 Luigi Ferrucci  30 Genomic Translation for ALS Care (GTAC) ConsortiumCristiane de Araujo Martins Moreno  31 Sitharthan Kamalakaran  32 David B Goldstein  32 ALS Sequencing ConsortiumAaron D Gitler  33 Tim Harris  34 Richard M Myers  35 NYGC ALS ConsortiumHemali Phatnani  36 Rajeeva Lochan Musunuri  37 Uday Shankar Evani  37 Avinash Abhyankar  37 Michael C Zody  37 Answer ALS FoundationJulia Kaye  38 Steven Finkbeiner  39 Stacia K Wyman  38 Alex LeNail  40 Leandro Lima  38 Ernest Fraenkel  41 Clive N Svendsen  42 Leslie M Thompson  43 Jennifer E Van Eyk  44 James D Berry  45 Timothy M Miller  46 Stephen J Kolb  47 Merit Cudkowicz  45 Emily Baxi  48 Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) ConsortiumMichael Benatar  49 J Paul Taylor  50 Evadnie Rampersaud  51 Gang Wu  51 Joanne Wuu  49 SLAGEN ConsortiumGiuseppe Lauria  52 Federico Verde  53 Isabella Fogh  54 Cinzia Tiloca  53 Giacomo P Comi  55 Gianni Sorarù  56 Cristina Cereda  57 French ALS ConsortiumPhilippe Corcia  58 Hannu Laaksovirta  59 Liisa Myllykangas  60 Lilja Jansson  59 Miko Valori  59 John Ealing  61 Hisham Hamdalla  61 Sara Rollinson  62 Stuart Pickering-Brown  62 Richard W Orrell  63 Katie C Sidle  64 Andrea Malaspina  65 John Hardy  64 Andrew B Singleton  66 Janel O Johnson  1 Sampath Arepalli  67 Peter C Sapp  2 Diane McKenna-Yasek  2 Meraida Polak  68 Seneshaw Asress  68 Safa Al-Sarraj  9 Andrew King  9 Claire Troakes  9 Caroline Vance  9 Jacqueline de Belleroche  69 Frank Baas  70 Anneloor L M A Ten Asbroek  71 José Luis Muñoz-Blanco  72 Dena G Hernandez  67 Jinhui Ding  73 J Raphael Gibbs  73 Sonja W Scholz  74 Mary Kay Floeter  75 Roy H Campbell  76 Francesco Landi  77 Robert Bowser  78 Stefan M Pulst  79 John M Ravits  80 Daniel J L MacGowan  81 Janine Kirby  82 Erik P Pioro  83 Roger Pamphlett  84 James Broach  85 Glenn Gerhard  86 Travis L Dunckley  87 Christopher B Brady  88 Neil W Kowall  89 Juan C Troncoso  90 Isabelle Le Ber  91 Kevin Mouzat  92 Serge Lumbroso  92 Terry D Heiman-Patterson  93 Freya Kamel  94 Ludo Van Den Bosch  95 Robert H Baloh  96 Tim M Strom  97 Thomas Meitinger  98 Aleksey Shatunov  9 Kristel R Van Eijk  7 Mamede de Carvalho  99 Maarten Kooyman  100 Bas Middelkoop  7 Matthieu Moisse  95 Russell L McLaughlin  101 Michael A Van Es  7 Markus Weber  102 Kevin B Boylan  103 Marka Van Blitterswijk  104 Rosa Rademakers  104 Karen E Morrison  105 A Nazli Basak  106 Jesús S Mora  107 Vivian E Drory  108 Pamela J Shaw  82 Martin R Turner  109 Kevin Talbot  109 Orla Hardiman  110 Kelly L Williams  111 Jennifer A Fifita  111 Garth A Nicholson  112 Ian P Blair  111 Guy A Rouleau  113 Jesús Esteban-Pérez  114 Alberto García-Redondo  114 Ammar Al-Chalabi  9 Project MinE ALS Sequencing ConsortiumEkaterina Rogaeva  115 Lorne Zinman  116 Lyle W Ostrow  48 Nicholas J Maragakis  48 Jeffrey D Rothstein  48 Zachary Simmons  117 Johnathan Cooper-Knock  82 Alexis Brice  91 Stephen A Goutman  118 Eva L Feldman  118 Summer B Gibson  79 Franco Taroni  119 Antonia Ratti  4 Cinzia Gellera  119 Philip Van Damme  120 Wim Robberecht  120 Pietro Fratta  121 Mario Sabatelli  122 Christian Lunetta  123 Albert C Ludolph  124 Peter M Andersen  125 Jochen H Weishaupt  124 William Camu  126 John Q Trojanowski  127 Vivianna M Van Deerlin  127 Robert H Brown Jr  2 Leonard H van den Berg  7 Jan H Veldink  7 Matthew B Harms  31 Jonathan D Glass  68 David J Stone  128 Pentti Tienari  59 Vincenzo Silani  4 Adriano Chiò  129 Christopher E Shaw  9 Bryan J Traynor  130 John E Landers  131
Collaborators, Affiliations

Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

Aude Nicolas et al. Neuron. .

Abstract

To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.

Keywords: ALS; GWAS; KIF5A; WES; WGS; axonal transport; cargo.

PubMed Disclaimer

Conflict of interest statement

Declaration of Interests: J.D.Be. is a consultant to Neuraltus Pharmaceuticals and Denali Therapeutics, and held a research fellow position funded by Voyager Therapeutics. M.C. has been a consultant for Eli Lilly and Company, Mitsubishi Tanabe Pharma America (MT Pharma America), Denali Therapeutics, Karyopharm Therapeutics and Cytokinetics. S.A.G. has served as a consultant and received research support from Cytokinetics. O.H. has received speaking honoraria from Novarits, Biogen Idec, Sanofi Aventis and Merck-Serono and has been a member of advisory panels for Biogen Idec, Allergen, Ono Pharmaceuticals, Novartis, Cytokinetics and Sanofi Aventis. O.H. serves as Editor-in-Chief of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. L.H.v.d.B. serves on scientific advisory boards for the Prinses Beatrix Spierfonds, Thierry Latran Foundation, Biogen and Cytokinetics. Serves on the editorial board of Amyotrophic Lateral Sclerosis And Frontotemporal Degeneration and The Journal of Neurology, Neurosurgery, and Psychiatry. J.H.V. reports that his institute received consultancy fees from Vertex Pharmaceuticals. A.C. serves on scientific advisory boards for Biogen Idec, Cytokinetics, Italfarmaco, and Neuraltus. P.M.A. serve on advisory board panels for Biogen and Orphazyme. V.S. serves as a consultant for Cytokinetics.

Figures

Figure 1
Figure 1. Identification of association between KIF5A locus and ALS risk through GWAS
(A) Manhattan plot showing P values from the discovery set GWAS. Analysis of a combined set of 20,806 cases and 59,804 controls is shown. The dashed red line denotes the threshold for genome-wide significance after multiple test correction (P < 5.0×10−8). Five previously reported ALS associated loci are labeled in grey and one novel loci, containing the KIF5A gene, is labeled in black. (B) Regional association plot of the KIF5A locus. Recombination rates are from HapMap phase 2 European ancestry samples. The R2 pattern is based on the rs113247976 SNP using 85 European ancestry samples (CEU) from the November 2010 release of the 1000 Genomes Project dataset. R2 of the p.Pro986Leu (rs113247976) with additional SNPs achieving genome-wide significance was 0.544 (rs117027576), 0.544 (rs118082508), 0.741 (rs116900480), and 0.347 (rs142321490).
Figure 2
Figure 2. Discovery and replication for the association of the KIF5A p.Pro986Leu (rs113247976) variant with ALS
Analysis of the p.Pro986Leu (rs113247976) variant within each of the described cohorts is shown. Allelic association for all subcohorts were analyzed by logistic regression followed by a fixed-effects meta-analysis. The Forest plot (right) displays the distribution of OR estimates across study cohorts with the vertical dotted line denoting the OR estimated under the meta-analysis.
Figure 3
Figure 3. Identification of association between KIF5A and ALS risk through rare variant burden analysis of exome sequencing
Manhattan plot showing gene-level P values from an exome-wide rare variant burden analysis. Analyses of 1,138 index FALS cases versus 19,494 controls were restricted to rare LOF variants (splice altering/nonsense, MAF < 0.001). A minimum of 3 LOF gene variants were required for analysis. The dashed red line denotes the threshold for exome-wide significance after correction for 11,472 genes (4.36×10−6). Previously reported (grey) and novel (black) genes exhibiting a significant excess of rare LOF variants in patients are shown.
Figure 4
Figure 4. ALS associated loss of function variants of KIF5A disrupt C-terminal sequence by inducing skipping of exon 27
(A) Single nucleotide variants (SNVs) within KIF5A identified in ALS patients are clustered at the 5′ and 3′ splice junctions of exon 27. The consensus splice sequence is shown. (B) ALS associated SNVs are predicted to induce skipping of exon 27 and result in an aberrant mRNA transcript. (C) The skipping of exon 27 of KIF5A yields an out-of-frame and extended disrupted C-terminal peptide sequence. The amino acids in red signify the divergence from the normal protein. (D) RT-PCR was performed using RNA derived from ALS patients with the indicated LOF variant or without (controls) using primers to either amplify both wild-type (155 bp) and mutant (127 bp) splice forms or specifically the mutant splice form (80 bp, right panel). The arrow represents the position of the mutant specific product. The tick marks represent 200 bp (upper) and 100 bp (lower) markers.
Figure 5
Figure 5. KIF5A ALS mutations show distinct localization from missense mutations previously associated with SPG10 and CMT2
Causative mutations for SPG10 and CMT2 described within the literature (Crimella et al., 2011; Jennings et al., 2017; Liu et al., 2014; Reid et al., 2002) and ALS associated mutations identified within this study are shown. As illustrated, mutations causative for SPG10/CMT2 are predominantly missense changes located in the N-terminal motor domain. In contrast, ALS mutations are primarily located at the C-terminal motor domain and are LOF.

References

    1. Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, Russ C, Shaw CE, Powell JF, Leigh PN. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Human Molecular Genetics. 1999;8:157–164. - PubMed
    1. ALSGEN Consortium. Ahmeti KB, Ajroud-Driss S, Al-Chalabi A, Andersen PM, Armstrong J, Birve A, Blauw HM, Brown RH, Bruijn L, et al. Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiol Aging. 2013;34:357.e7–.e19. - PMC - PubMed
    1. Arthur KC, Calvo A, Price TR, Geiger JT, Chio A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. 2016;7:12408. - PMC - PubMed
    1. Benyamin B, He J, Zhao Q, Gratten J, Garton F, Leo PJ, Liu Z, Mangelsdorf M, Al-Chalabi A, Anderson L, et al. Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nat Commun. 2017;8:611. - PMC - PubMed
    1. Brenner D, Yilmaz R, Müller K, Grehl T, Petri S, Meyer T, Grosskreutz J, Weydt P, Ruf W, Neuwirth C, et al. Hot-spot KIF5A mutations cause familial ALS. Brain. 2018 doi: 10.1093/brain/awx370. - DOI - PMC - PubMed

Publication types

Grants and funding