Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 8:12:142.
doi: 10.3389/fnins.2018.00142. eCollection 2018.

Auditory Proprioceptive Integration: Effects of Real-Time Kinematic Auditory Feedback on Knee Proprioception

Affiliations

Auditory Proprioceptive Integration: Effects of Real-Time Kinematic Auditory Feedback on Knee Proprioception

Shashank Ghai et al. Front Neurosci. .

Abstract

The purpose of the study was to assess the influence of real-time auditory feedback on knee proprioception. Thirty healthy participants were randomly allocated to control (n = 15), and experimental group I (15). The participants performed an active knee-repositioning task using their dominant leg, with/without additional real-time auditory feedback where the frequency was mapped in a convergent manner to two different target angles (40 and 75°). Statistical analysis revealed significant enhancement in knee re-positioning accuracy for the constant and absolute error with real-time auditory feedback, within and across the groups. Besides this convergent condition, we established a second divergent condition. Here, a step-wise transposition of frequency was performed to explore whether a systematic tuning between auditory-proprioceptive repositioning exists. No significant effects were identified in this divergent auditory feedback condition. An additional experimental group II (n = 20) was further included. Here, we investigated the influence of a larger magnitude and directional change of step-wise transposition of the frequency. In a first step, results confirm the findings of experiment I. Moreover, significant effects on knee auditory-proprioception repositioning were evident when divergent auditory feedback was applied. During the step-wise transposition participants showed systematic modulation of knee movements in the opposite direction of transposition. We confirm that knee re-positioning accuracy can be enhanced with concurrent application of real-time auditory feedback and that knee re-positioning can modulated in a goal-directed manner with step-wise transposition of frequency. Clinical implications are discussed with respect to joint position sense in rehabilitation settings.

Keywords: coordination; joint position sense; perception; rehabilitation; sonification.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Absolute mean and standard error of repositioning error (°) for the control, experimental group I (Dotted line represents control group. Darkened black line represents experimental group I, T: Proprioceptive test without auditory feedback, RT: Real-time auditory feedback, MAP: Acoustic mapping, CT: Control group, EXP: Experimental group). *Represents significant differences.
Figure 2
Figure 2
Constant mean and standard error of repositioning error (°) for the control, experimental group I (Dotted line represents control group. Darkened black line represents experimental group I, T: Proprioceptive test without auditory feedback, RT: Real-time auditory feedback, MAP: Acoustic mapping, CT: Control group, EXP: Experimental group). *Represents significant differences.
Figure 3
Figure 3
Absolute mean and standard error of repositioning error (°) for the control and experimental group II (Dotted line represents control group. Darkened black line represents experimental group II, T: Proprioceptive test without auditory feedback, RT: Real-time auditory feedback, MAP: Acoustic mapping, CT: Control group, EXP: Experimental group). *Represents significant differences.
Figure 4
Figure 4
Constant mean and standard error of repositioning error (°) for the control, and experimental group II. (Dotted line represents control group. Darkened black line represents experimental group I, gray line represents experimental group II, T: Proprioceptive test without auditory feedback, RT: Real-time auditory feedback MAP: Acoustic mapping step-down 0.25/rep for exp I, 1.3/rep for exp II, CT: Control group, EXP: Experimental group). *Represents significant differences.
Figure 5
Figure 5
Constant mean and standard error of repositioning error (°) for the experimental II, 2nd and 4th block, also for episodes (1–3). Difference in proprioceptive perceptions in between decomposed mapping conditions have been described for 5 sub-groups i.e., RT: real-time auditory feedback, sub-group I (G I: 40°: under-over-under, 75°: over-under-over), sub-group II (G II: 40°: over-under-over, 75°: over-under-over), sub-group III (G III:40°: over-under-over, 75°: under-over-under), and sub-group IV (G IV: 40°: under-over-under, 75°: under-over-under), and across 3 treatment blocks. The values on left represent 40°, and right 75° (RT: Real-time kinematic auditory feedback). *Represents significant differences.
Figure 6
Figure 6
Constant mean and standard error of the repositioning error (°) for the experimental II, 4th block, the values of transposition are normalized, and step-up transpositions have been multiplied with −1 to allow the direction of transposition to be similar for all three blocks. Mean values across the 2 angles for episodes (1–3). *Represents significant differences.

Similar articles

Cited by

References

    1. Altenmüller E., Marco-Pallares J., Münte T. F., Schneider S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N.Y. Acad. Sci. 1169, 395–405. 10.1111/j.1749-6632.2009.04580.x - DOI - PubMed
    1. Aman J. E., Elangovan N., Yeh I. L., Konczak J. (2014). The effectiveness of proprioceptive training for improving motor function: a systematic review. Front. Hum. Neurosci. 8:1075. 10.3389/fnhum.2014.01075 - DOI - PMC - PubMed
    1. Bavelier D., Neville H. J. (2002). Cross-modal plasticity: where and how? Nat. Rev. Neurosci. 3, 443–452. 10.1038/nrn848 - DOI - PubMed
    1. Belardinelli M. O., Federici S., Delogu F., Palmiero M. (2009). Sonification of spatial information: audio-tactile exploration strategies by normal and blind subjects, in International Conference on Universal Access in Human-Computer Interaction (Berlin; Heidelberg: Springer; ), 557–563.
    1. Butler J. S., Foxe J. J., Fiebelkorn I. C., Mercier M. R., Molholm S. (2012). Multisensory representation of frequency across audition and touch: high density electrical mapping reveals early sensory-perceptual coupling. J. Neurosci. 32, 15338–15344. 10.1523/JNEUROSCI.1796-12.2012 - DOI - PMC - PubMed

LinkOut - more resources