Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 1;8(12):8198-8203.
doi: 10.1039/c7sc03876c. Epub 2017 Oct 9.

The α-tertiary amine motif drives remarkable selectivity for Pd-catalyzed carbonylation of β-methylene C-H bonds

Affiliations

The α-tertiary amine motif drives remarkable selectivity for Pd-catalyzed carbonylation of β-methylene C-H bonds

Kirsten F Hogg et al. Chem Sci. .

Abstract

The selective C-H carbonylation of methylene bonds in the presence of traditionally more reactive methyl C-H and C(sp2)-H bonds in α-tertiary amines is reported. The exceptional selectivity is driven by the bulky α-tertiary amine motif, which we hypothesise orientates the activating C-H bond proximal to Pd in order to avoid an unfavourable steric clash with a second α-tertiary amine on the Pd centre, promoting preferential cyclopalladation at the methylene position. The reaction tolerates a range of structurally interesting and synthetically versatile functional groups, delivering the corresponding β-lactam products in good to excellent yields.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Overview of C–H carbonylation of aliphatic amines.
Scheme 2
Scheme 2. Pharmaceuticals and alkaloids containing the ATA motif.
Scheme 3
Scheme 3. Mechanistic hypothesis for C–H activation of ATAs.
Scheme 4
Scheme 4. Selectivity of ATA methylene C–H carbonylation.
Scheme 5
Scheme 5. N-Benzyl ATA substrate scope for selective methylene C–H carbonylation. aRatio of β-lactam 2 to γ-benzolactam 3.
Scheme 6
Scheme 6. Transformation of β-lactam products.

Similar articles

Cited by

References

    1. Yamaguchi J., Yamaguchi A. D., Itami K. Angew. Chem., Int. Ed. 2012;51:8960. - PubMed
    2. McMurray L., O'Hara F., Gaunt M. J. Chem. Soc. Rev. 2011;40:1885. - PubMed
    3. Wencel-Delord J., Glorius F. Nat. Chem. 2013;5:369. - PubMed
    4. Chen D. Y.-K., Youn S. W. Chem. –Eur. J. 2012;18:9452. - PubMed
    1. Shilov A. E., Shul'pin G. B. Chem. Rev. 1997;97:2879. - PubMed
    2. Godula K., Sames D. Science. 2006;312:67. - PubMed
    3. Labinger J. A., Bercaw J. E. Nature. 2002;417:507. - PubMed
    1. Hartwig J. F. Acc. Chem. Res. 2017;50:549. - PMC - PubMed
    1. Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147. - PMC - PubMed
    1. For examples of C–H activation using auxiliaries see: oximes:

    2. Desai L. V., Hull K. L., Sanford M. S. J. Am. Chem. Soc. 2004;126:9542. - PubMed
    3. Giri R., Chen X., Yu J.-Q. Angew. Chem., Int. Ed. 2005;44:2112. - PubMed
    4. Zaitsev V. G., Shabashov D., Daugulis O. J. Am. Chem. Soc. 2005;127:13154. - PubMed
    5. Wang D.-H., Wasa M., Giri R., Yu J.-Q. J. Am. Chem. Soc. 2008;130:7190. - PubMed
    6. Wasa M., Engle K. M., Yu J.-Q. J. Am. Chem. Soc. 2009;131:9886. - PMC - PubMed
    7. Ren Z., Mo F., Dong G. J. Am. Chem. Soc. 2012;134:16991. - PubMed
    8. Chan K. S. L., Wasa M., Chu L., Laforteza B. N., Miura M., Yu J.-Q. Nat. Chem. 2014;6:146. - PMC - PubMed

LinkOut - more resources