Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep 2;915(1):87-100.
doi: 10.1016/0167-4838(87)90128-2.

Human acid beta-glucosidase: use of inhibitors, alternative substrates and amphiphiles to investigate the properties of the normal and Gaucher disease active sites

Human acid beta-glucosidase: use of inhibitors, alternative substrates and amphiphiles to investigate the properties of the normal and Gaucher disease active sites

K Osiecki-Newman et al. Biochim Biophys Acta. .

Abstract

Comparative studies with lipoidal inhibitors and alternative substrates were conducted to investigate the properties of the active site of human acid beta-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) from normal placenta and spleens of Type 1 Ashkenazi Jewish Gaucher disease (AJGD) patients. With the normal enzyme, the inhibitory potencies of series of alkyl(Cn; n = 0-18)amines, alkyl beta-glucosides and alkyl-1-deoxynojirimycins were a biphasic function of increasing chain length: i.e., large decreases in Ki,app or IC50 were found only with n greater than 4 and limiting values were approached with n = 12-14. This biphasic function of alkyl chain length was observed in the presence or absence of detergents and/or negatively charged lipids. In the presence of Triton X-100 concentrations greater than the critical micellar concentration, the relative (to deoxynojirimycin) inhibitory potencies of the N-Cn-deoxynojirimycins (n greater than 4) were decreased about 3-5-fold, due to an energy requirement to extract the inhibitors from Triton X-100 micelles. The Ki,app or IC50 of N-hexylglucosylsphingosine was inversely related to the Triton X-100 concentration and was not affected by the presence of 'co-glucosidase'. The mutual exclusion of glucon, N-Cn-deoxynojirimycin and sphingosine derivatives from the normal enzyme suggested a shared region for binding in the active site. Increasing the fatty-acid acyl chain length of glucosyl ceramide from 1 to 24 carbons had minor effects on Km,app ( = Kis,app) (8-40 microM), but increased Vmax,app up to 13-fold. With the AJGD enzyme, the inhibitor and alternative substrate findings were similar to those with the normal enzyme, except that Kis,app(AJGD)/Kis,app(normal) = 4 to 11 for the Cn-glycons and sphingosine derivatives. These results indicated that (1) the Ki,app or Km,app values for amphiphilic inhibitors or substrates reflect a balance of binding energies for two hydrophobic subsites within the enzyme's active site and Triton X-100 micelles and (2) the abnormal properties of the AJGD enzyme result from an amino-acid alteration(s) within or near a hydrophilic region which is shared by the glycon-binding site and the two hydrophobic sites of the active site.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources