Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Mar 23;10(4):399.
doi: 10.3390/nu10040399.

Lysophosphatidic Acid Signaling in Obesity and Insulin Resistance

Affiliations
Review

Lysophosphatidic Acid Signaling in Obesity and Insulin Resistance

Kenneth D'Souza et al. Nutrients. .

Abstract

Although simple in structure, lysophosphatidic acid (LPA) is a potent bioactive lipid that profoundly influences cellular signaling and function upon binding to G protein-coupled receptors (LPA1-6). The majority of circulating LPA is produced by the secreted enzyme autotaxin (ATX). Alterations in LPA signaling, in conjunction with changes in autotaxin (ATX) expression and activity, have been implicated in metabolic and inflammatory disorders including obesity, insulin resistance, and cardiovascular disease. This review summarizes our current understanding of the sources and metabolism of LPA with focus on the influence of diet on circulating LPA. Furthermore, we explore how the ATX-LPA pathway impacts obesity and obesity-associated disorders, including impaired glucose homeostasis, insulin resistance, and cardiovascular disease.

Keywords: adipocytes; autotaxin; cardiovascular disease; diet; insulin resistance; lysophosphatidic acid; lysophospholipids; obesity.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Metabolism of circulating lysophosphatidic acid (LPA). LPA is either synthesized from phosphatidic acid (PA) through the actions of PLA1/PLA2 or via autotaxin (ATX)-mediated hydrolysis of lysophosphatidylcholine (LPC). Clearance of circulating LPA involves its rapid degradation to monoacylglycerol (MAG) through the actions of LPP1/3 or hepatic uptake of LPA. sPLA2-IIA, group IIA secretory phospholipase A2; mPA-PLA1, membrane-bound PA-selective phospholipase A1; LCAT, lecithin–cholesterol acyltransferase.
Figure 2
Figure 2
Sources of circulating LPA. LPA can be generated from a variety of sources, including lipoproteins, exosomes, activated platelets, and diet.
Figure 3
Figure 3
Potential mechanisms by which ATX-LPA signaling promotes insulin resistance and impaired glucose homeostasis. The ATX-LPA pathway may contribute to obesity-induced insulin resistance by stimulating inflammation and fibrosis and/or suppressing brown adipose tissue (BAT) and mitochondrial function, and PPARγ signaling.

Similar articles

Cited by

References

    1. Almena M., Merida I. Shaping up the membrane: Diacylglycerol coordinates spatial orientation of signaling. Trends Biochem. Sci. 2011;36:593–603. doi: 10.1016/j.tibs.2011.06.005. - DOI - PubMed
    1. Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013;93:1019–1137. doi: 10.1152/physrev.00028.2012. - DOI - PMC - PubMed
    1. Maceyka M., Harikumar K.B., Milstien S., Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22:50–60. doi: 10.1016/j.tcb.2011.09.003. - DOI - PMC - PubMed
    1. Shi H., Kokoeva M.V., Inouye K., Tzameli I., Yin H., Flier J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 2006;116:3015–3025. doi: 10.1172/JCI28898. - DOI - PMC - PubMed
    1. Huang S., Rutkowsky J.M., Snodgrass R.G., Ono-Moore K.D., Schneider D.A., Newman J.W., Adams S.H., Hwang D.H. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 2012;53:2002–2013. doi: 10.1194/jlr.D029546. - DOI - PMC - PubMed

MeSH terms