Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun;94(5):895-909.
doi: 10.1111/tpj.13906. Epub 2018 Apr 21.

Genomic adaptation of flowering-time genes during the expansion of rice cultivation area

Affiliations
Free article

Genomic adaptation of flowering-time genes during the expansion of rice cultivation area

Hironori Itoh et al. Plant J. 2018 Jun.
Free article

Abstract

The diversification of flowering time in response to natural environments is critical for the spread of crops to diverse geographic regions. In contrast with recent advances in understanding the molecular basis of photoperiodic flowering in rice (Oryza sativa), little is known about how flowering-time diversification is structured within rice subspecies. By analyzing genome sequencing data and a set of 429 chromosome segment substitution lines (CSSLs) originating from 10 diverse rice accessions with wide distributions, we revealed diverse effects of allelic variations for common flowering-time quantitative trait loci in the recipient's background. Although functional variations associated with a few loci corresponded to standing variations among subspecies, the identified functional nucleotide polymorphisms occurred recently after rice subgroup differentiation, indicating that the functional diversity of flowering-time gene sequences was not particularly associated with phylogenetic relationship between rice subspecies. Intensive analysis of the Hd1 genomic region identified the signature of an early introgression of the Hd1 with key mutation(s) in aus and temperate japonica accessions. Our data suggested that, after such key introgressions, new mutations were selected and accelerated the flowering-time diversity within subspecies during the expansion of rice cultivation area. This finding may imply that new genome-wide changes for flowering-time adaptation are one of the critical determinants for establishing genomic architecture of local rice subgroups. In-depth analyses of various rice genomes coupling with the genetically confirmed phenotypic changes in a large set of CSSLs enabled us to demonstrate how rice genome dynamics has coordinated with the adaptation of cultivated rice during the expansion of cultivation area.

Keywords: chromosome segment substitution lines; functional nucleotide polymorphisms; genome resequencing; northward progression; photoperiodic flowering; rice (Oryza sativa).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources