Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jun 20:660:28-40.
doi: 10.1016/j.gene.2018.03.059. Epub 2018 Mar 21.

The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility

Affiliations
Review

The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility

Ya-Lan Wei et al. Gene. .

Abstract

Sperm malformation is one of the main reasons for male infertility, but the precise mechanisms of this process remain undiscovered. The major process of spermiogenesis is sperm head shaping. Cytoskeleton is a crucial unit in this process, as the acroplaxome and manchette are two kinds of momentous structures cooperated with various functional proteins to insure the formation of acrosome and nucleus. One is primarily formed by filamentous actin (F-actin) and responsible for transverse acrosome extension and concentration, another plays as the mainstay of nuclear deformation through circular arrangement of microtubules (MTs). We suspect that the acroplaxome alone cannot maintain such a spatial framework of the acrosome. Previous studies have also revealed that a nucleus without acrosome could not induce the formation of ectoplasmic specialization. In this review, we integrated most of the key proteins that have been proven to participate in the essential developmental steps of post-meiosis. We also propose that the ambient MTs of the acrosome might be emanated from the Golgi apparatus. They form a novel cytoskeleton termed acroframosome (AFS) to transport vesicles and proteins during acrosome biogenesis. The hypothesis of the acroframosome-acroplaxome-manchette (AAM) cytoskeletal system is likely to be the axis of head-to-tail spermiogenesis.

Keywords: Acroframosome; Acroplaxome; Cytoskeleton; Manchette; Spermiogenesis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources