Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec;104(6):1219-1228.
doi: 10.1002/cpt.1076. Epub 2018 Apr 19.

Physiologically Based Pharmacokinetic Modeling to Identify Physiological and Molecular Characteristics Driving Variability in Drug Exposure

Affiliations

Physiologically Based Pharmacokinetic Modeling to Identify Physiological and Molecular Characteristics Driving Variability in Drug Exposure

Andrew Rowland et al. Clin Pharmacol Ther. 2018 Dec.

Abstract

Prospectively defining the physiological and molecular characteristics most likely driving between-subject variability (BSV) in drug exposure provides the opportunity to inform the assessment of biomarkers to account for this variability. A physiologically based pharmacokinetic (PBPK) model was constructed and verified for dabrafenib. This model was then used to evaluate the physiological and molecular characteristics driving BSV in dabrafenib exposure. The capacity to discriminate a steady-state dabrafenib trough concentration >48 ng/mL was also evaluated. The mean simulated/observed ratios for the parameters describing dabrafenib exposure in single-dose, multiple-dose, and drug-drug interaction studies were between 0.78 and 1.23. Multivariable analysis indicated that consideration of baseline weight, body mass index, and CYP2C8, CYP3A4, and P-gp abundance strongly predicts steady-state dabrafenib trough concentration above 48 ng/mL (ROC AUC = 0.94; accuracy = 86%). This is the first study to use a verified PBPK model to identify baseline physiological and molecular characteristics driving BSV in drug exposure.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources