Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;119(7):5921-5933.
doi: 10.1002/jcb.26787. Epub 2018 Mar 25.

Novel organometallic chloroquine derivative inhibits tumor growth

Affiliations

Novel organometallic chloroquine derivative inhibits tumor growth

Elizabeth A Hall et al. J Cell Biochem. 2018 Jul.

Abstract

Autophagy has emerged as a mechanism critical to both tumorigenesis and development of resistance to multiple lines of anti-cancer therapy. Therefore, targeting autophagy and alternative cell death pathways has arisen as a viable strategy for refractory tumors. The anti-malarial 4-aminoquinoline compounds chloroquine and hydroxychloroquine are currently being considered for re-purposing as anti-cancer therapies intended to sensitize different tumors by targeting the lysosomal cell death pathway. Here, we describe a novel organometallic chloroquine derivative, cymanquine, that exhibits enhanced bioactivity compared to chloroquine in both normal, and reduced pH tumor microenvironments, thus overcoming a defined limitation of traditional 4-aminoquinolines. In vitro, cymanquine exhibits greater potency than CQ in a diverse panel of human cancer cell lines, including melanoma, in both normal pH and in reduced pH conditions that mimic the tumor microenvironment. Cymanquine treatment results in greater lysosomal accumulation than chloroquine and induces lysosomal dysfunction leading to autophagy blockade. Using a mouse model of vemurafenib-resistant melanoma, cymanquine slowed tumor growth greater than hydroxychloroquine, and when used in combination with vemurafenib, cymanquine partially restored sensitivity to vemurafenib. Overall, we show that cymanquine exhibits superior lysosomal accumulation and autophagy blockade than either chloroquine or hydroxychloroquine in vitro; and in addition to its high level of tolerability in mice, exhibits superior in vivo efficacy in a model of human melanoma.

Keywords: autophagy; chloroquine; lysosome; melanoma; vemurafenib-resistance.

PubMed Disclaimer

Publication types

LinkOut - more resources