Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;66(8):1724-1735.
doi: 10.1002/glia.23330. Epub 2018 Mar 25.

GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes

Affiliations

GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes

Abel Eraso-Pichot et al. Glia. 2018 Aug.

Abstract

The prevalent view in neuroenergetics is that glucose is the main brain fuel, with neurons being mostly oxidative and astrocytes glycolytic. Evidence supporting that astrocyte mitochondria are functional has been overlooked. Here we sought to determine what is unique about astrocyte mitochondria by performing unbiased statistical comparisons of the mitochondriome in astrocytes and neurons. Using MitoCarta, a compendium of mitochondrial proteins, together with transcriptomes of mouse neurons and astrocytes, we generated cell-specific databases of nuclear genes encoding for mitochondrion proteins, ranked according to relative expression. Standard and in-house Gene Set Enrichment Analyses (GSEA) of five mouse transcriptomes revealed that genes encoding for enzymes involved in fatty acid oxidation (FAO) and amino acid catabolism are consistently more expressed in astrocytes than in neurons. FAO and oxidative-metabolism-related genes are also up-regulated in human cortical astrocytes versus the whole cortex, and in adult astrocytes versus fetal astrocytes. We thus present the first evidence of FAO in human astrocytes. Further, as shown in vitro, FAO coexists with glycolysis in astrocytes and is inhibited by glutamate. Altogether, these analyses provide arguments against the glucose-centered view of energy metabolism in astrocytes and reveal mitochondria as specialized organelles in these cells.

Keywords: metabolism; mitochondria; neurons; transcriptome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources