Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Apr;133(4):857-65.
doi: 10.1099/00221287-133-4-857.

Effect of ethanol on activity of the plasma-membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae

Affiliations

Effect of ethanol on activity of the plasma-membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae

C P Cartwright et al. J Gen Microbiol. 1987 Apr.

Abstract

The pH optimum of the ATPase activity in plasma membranes from Saccharomyces cerevisiae NCYC 431 from 8 h cultures was around 6.5 and that in membranes from organisms from 16 h cultures near 6.0. The Km[ATP] of the enzyme was virtually unaffected by the age of the culture from which organisms were harvested, although the Vmax of the enzyme in membranes from organisms from 8 h cultures was higher than that for organisms from 16 h cultures. Ethanol non-competitively inhibited ATPase activity in membranes, although the inhibition constant for the enzyme from organisms from 8 h cultures was lower than that from organisms from 16 h cultures. Glycine accumulation by the general amino acid permease was non-competitively inhibited by ethanol. Inhibition constants were virtually the same for glycine uptake by deenergized organisms from 8 h and 16 h cultures, but under energized conditions the value was greater for organisms from 16 h rather than 8 h cultures. The data indicate that inhibition of plasma-membrane ATPase activity by ethanol could account, at least in part, for inhibition of glycine accumulation by ethanol.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms