Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 27;18(1):52.
doi: 10.1186/s12870-018-1242-4.

Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing

Affiliations

Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing

Xiucun Zeng et al. BMC Plant Biol. .

Abstract

Background: Low temperature is a major abiotic stress affecting the production of rapeseed in China by impeding plant growth and development. A comprehensive knowledge of small-RNA expression pattern in Brassica rapa under cold stress could improve our knowledge of microRNA-mediated stress responses.

Results: A total of 353 cold-responsive miRNAs, 84 putative novel and 269 conserved miRNAs, were identified from the leaves and roots of two winter turnip rape varieties 'Longyou 7' (cold-tolerant) and 'Tianyou 4' (cold-sensitive), which were stressed under - 4 °C for 8 h. Eight conserved (miR166h-3p-1, miR398b-3p, miR398b-3p-1, miR408d, miR156a-5p, miR396h, miR845a-1, miR166u) and two novel miRNAs (Bra-novel-miR3153-5p and Bra-novel-miR3172-5p) were differentially expressed in leaves of 'Longyou 7' under cold stress. Bra-novel-miR3936-5p was up-regulated in roots of 'Longyou 7' under cold stress. Four and five conserved miRNAs were differentially expressed in leaves and roots of 'Tianyou 4' after cold stress. Besides, we found two conserved miRNAs (miR319e and miR166m-2) were down-regulated in non-stressed roots of 'Longyou 7' compared with 'Tianyou 4'. After cold stress, we found two and eight miRNAs were differentially expressed in leaves and roots of 'Longyou 7' compared with 'Tianyou 4'. The differentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR166 and miR319 families. A total of 211 target genes for 15 known miRNAs and two novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Five differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR, and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR166e, miR319, and Bra-novel-miR3936-5p) may play important roles in plant response to cold stress.

Conclusions: Our work indicates that miRNA and putative target genes mediated metabolic processes and stress responses are significant to cold tolerance in B. rapa.

Keywords: Brassica rapa; Cold stress; Target gene; Turnip; microRNA.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The responses of MDA content and POD activity to cold stress
Fig. 2
Fig. 2
Sequence length distribution of sRNAs in winter turnip rape
Fig. 3
Fig. 3
Analysis of identified conserve microRNAs in leaves and roots from two winter turnip rape varieties
Fig. 4
Fig. 4
Secondary structures of differentially expressed novel miRNA precursors
Fig. 5
Fig. 5
Differential expression of miRNAs under cold stress
Fig. 6
Fig. 6
Gene Ontology (GO) categories and sub-categories of differentially expressed miRNA targets between the following samples: 7LCK versus7LTR, 4LCK versus 4LTR (A); 4RCK versus 4RTR, 7RCK versus 7RTR (B)
Fig. 7
Fig. 7
qRT-PCR analysis of differentially expressed miRNAs and the target genes

Similar articles

Cited by

References

    1. Arbaoui M, Balko C, Link W. Study of faba bean (Viciafaba L.) winter-hardiness and development of screening methods. Field Crops Res. 2008;106(1):60–67.
    1. Kerepesi I, Bányai-Stefanovits E, Galiba G. Cold acclimation and abscisic acid induced alterations in carbohydrate content in call of wheat genotypes differing in frost tolerance. J Plant Physiol. 2004;161(1):131–133. - PubMed
    1. Frentzen M, Nishida I, Murata N. Properties of the plastidial acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase from the chilling sensitive plant squash (Cucurbita moschata) Plant Cell Physiol. 1987;28(7):1195–1201.
    1. Yeh S, Moffatt BA, Griffith M, Xiong F, Daniel SC, Yang SB, Sarhan F, Danyluk J, Xue YQ, Hew CL, et al. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 2000;124(3):1251–1263. - PMC - PubMed
    1. Medina J, Catalá R, Salinas J. Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol. 2001;125(4):1655–1666. - PMC - PubMed

MeSH terms

LinkOut - more resources