Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb;10(Suppl 3):S460-S467.
doi: 10.21037/jtd.2017.12.51.

Immune checkpoint inhibitors in small cell lung cancer

Affiliations
Review

Immune checkpoint inhibitors in small cell lung cancer

Suchita Pakkala et al. J Thorac Dis. 2018 Feb.

Abstract

Small cell lung cancer (SCLC) is a rapidly progressive cancer that often debilitates patients within months of detection and quickly becomes refractory to the limited options of therapy. While SCLC is not generally considered an immunogenic tumor, clinical experience suggests that patients with robust immune response manifesting as paraneoplastic syndrome are more likely to present with limited stage of the disease and tend to have a better prognosis. Monoclonal antibodies targeting critical negative regulators of immune response, so called immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) have expanded the application of immune-based therapies to increasing number of advanced stage cancers. These agents overcome the inhibitory immune signals leading to a heightened immune response against cancer cells. These immune checkpoint inhibitors have established efficacy leading to regulatory approval for their use in many cancer types including non-small cell lung cancer (NSCLC). Evaluation of the CTLA-4 inhibitor, ipilimumab and PD-1 inhibitors, nivolumab and pembrolizumab in SCLC have shown encouraging signal but definitive studies are still ongoing. In this review, we discuss the rationale behind the use of checkpoint inhibitors in SCLC, contextualize the results of early trials of immunotherapy agents in SCLC and project the future evolution of this strategy.

Keywords: Small cell lung cancer (SCLC); immune checkpoint; immunotherapy; programmed cell death protein 1 (PD-1); programmed death-ligand 1 (PD-L1).

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

    1. Govindan R, Page N, Morgensztern D, et al. Changing epidemiology of small-cell lung cancer in the united states over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 2006;24:4539-44. 10.1200/JCO.2005.04.4859 - DOI - PubMed
    1. Socinski MA, Smit EF, Lorigan P, et al. Phase III study of pemetrexed plus carboplatin compared with etoposide plus carboplatin in chemotherapy-naive patients with extensive-stage small-cell lung cancer. J Clin Oncol 2009;27:4787-92. 10.1200/JCO.2009.23.1548 - DOI - PubMed
    1. Lara PN, Natale R, Crowley J, et al. Phase III Trial of Irinotecan/Cisplatin Compared With Etoposide/Cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from SWOG S0124. J Clin Oncol 2009;27:2530-5. 10.1200/JCO.2008.20.1061 - DOI - PMC - PubMed
    1. Rossi A, Maio MD, Chiodini P, et al. Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: the COCIS meta-analysis of individual patient data. J Clin Oncol 2012;30:1692-8. 10.1200/JCO.2011.40.4905 - DOI - PubMed
    1. Slotman BJ, van Tinteren H, Praag JO, et al. Use of thoracic radiotherapy for extensive stage small-cell lung cancer: a phase 3 randomised controlled trial. Lancet 2015;385:36-42. 10.1016/S0140-6736(14)61085-0 - DOI - PubMed