Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Nov;84(21):7373-7.
doi: 10.1073/pnas.84.21.7373.

Glutathione disulfide-stimulated Mg2+-ATPase of human erythrocyte membranes

Affiliations

Glutathione disulfide-stimulated Mg2+-ATPase of human erythrocyte membranes

T Kondo et al. Proc Natl Acad Sci U S A. 1987 Nov.

Abstract

Inside-out erythrocyte membranes attached to polycationic beads manifested glutathione disulfide (GSSG)-stimulated ATPase activity. A Lineweaver-Burk plot of the ATPase activity as a function of GSSG concentration was biphasic and gave apparent Km values of 0.13 mM and 2.0 mM. These kinetics are similar to those reported for the ATP-requiring GSSG-transport systems in human erythrocytes and for the GSSG-stimulated ATPase activity in the plasma membranes of rat hepatocytes. Erythrocyte membranes that were depleted of extrinsic proteins were solubilized in 0.5% Triton X-100. Affinity chromatography on S-hexylglutathione-Sepharose 6B, with elution by a linear gradient of S-hexyl-glutathione, resulted in the resolution of two peaks of enzyme activity. One enzyme, which was eluted at approximately 0.5 mM S-hexylglutathione, had a high affinity for GSSG (apparent Km of 150 microM) and for ATP (80 microM). The other enzyme, which was eluted at approximately 1 mM S-hexylglutathione, had a low affinity for GSSG (apparent Km of 2.0 mM) and ATP (140 microM). GSSG-independent Mg2+-ATPase, Ca2+-dependent Mg2+-ATPase and Na+, K+-dependent Mg2+-ATPase were undetectable in the fractions. Addition of Ca2+, ouabain, or vanadate neither activated nor inhibited the activities, further indicating that the enzymes are distinguishable from ion-pumping ATPases. The enzymes required GSSG for activation; reduced glutathione (GSH) was ineffective. The ATPase activity of the high-Km enzyme was inhibited by addition of p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetamide and was activated by treatment with dithiothreitol, whereas the ATPase activity of the low-Km enzyme was not modified by these thiol reagents. The properties of the enzymes are similar to those of ATP-dependent GSSG-transport systems in human erythrocytes, suggesting that these ATPases may function in the active transport of GSSG.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Blood. 1979 Jul;54(1):238-44 - PubMed
    1. Science. 1977 Jan 21;195(4275):302-4 - PubMed
    1. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6359-62 - PubMed
    1. Biochim Biophys Acta. 1981 Jul 6;645(1):132-6 - PubMed
    1. Methods Enzymol. 1981;77:231-5 - PubMed

Publication types

LinkOut - more resources