Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 17;90(8):5422-5429.
doi: 10.1021/acs.analchem.8b00618. Epub 2018 Apr 4.

Separation of Branched Poly(bisphenol A carbonate) Structures by Solvent Gradient at Near-Critical Conditions and Two-Dimensional Liquid Chromatography

Affiliations

Separation of Branched Poly(bisphenol A carbonate) Structures by Solvent Gradient at Near-Critical Conditions and Two-Dimensional Liquid Chromatography

Nico Apel et al. Anal Chem. .

Abstract

Branching is a molecular metric that strongly influences the application properties of polymers. Consequently, detailed information on the microstructure is required to gain a deeper understanding of structure-property relationships. In the present case, we employ high-performance liquid chromatography to characterize the branching in a poly(bisphenol A carbonate) (PC). To this end, a method was developed based on a mobile phase gradient in a very narrow range (±1.4 vol %) around the point of adsorption (98.9/1.1 vol % chloroform/methyl tert-butyl ether), which we refer to as solvent gradient at near-critical conditions. Application of such gentle gradient enabled separation of PC according to end-groups. The separation mechanism was confirmed by collecting fractions of a separated sample and subsequently analyzing these by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Hyphenating the developed gradient method with size-exclusion chromatography as the second dimension (2D-LC) enabled separation of linear and branched PC chains and determination of the molar mass distribution of the fractions. A reversed elution order was observed for branched species in 2D-LC, meaning that low molar mass chains exhibited higher elution volumes in the first dimension than higher molar masses. This finding was explained by influences of end-groups as well as the architecture of the branched polymer chains.

PubMed Disclaimer

Publication types