Clinical Natural Language Processing in languages other than English: opportunities and challenges
- PMID: 29602312
- PMCID: PMC5877394
- DOI: 10.1186/s13326-018-0179-8
Clinical Natural Language Processing in languages other than English: opportunities and challenges
Abstract
Background: Natural language processing applied to clinical text or aimed at a clinical outcome has been thriving in recent years. This paper offers the first broad overview of clinical Natural Language Processing (NLP) for languages other than English. Recent studies are summarized to offer insights and outline opportunities in this area.
Main body: We envision three groups of intended readers: (1) NLP researchers leveraging experience gained in other languages, (2) NLP researchers faced with establishing clinical text processing in a language other than English, and (3) clinical informatics researchers and practitioners looking for resources in their languages in order to apply NLP techniques and tools to clinical practice and/or investigation. We review work in clinical NLP in languages other than English. We classify these studies into three groups: (i) studies describing the development of new NLP systems or components de novo, (ii) studies describing the adaptation of NLP architectures developed for English to another language, and (iii) studies focusing on a particular clinical application.
Conclusion: We show the advantages and drawbacks of each method, and highlight the appropriate application context. Finally, we identify major challenges and opportunities that will affect the impact of NLP on clinical practice and public health studies in a context that encompasses English as well as other languages.
Keywords: Clinical Decision-Making; Languages other than English; Natural Language Processing.
Conflict of interest statement
Ethics approval and consent to participate
Not Applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources