Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;87(4):995-1007.
doi: 10.1111/1365-2656.12831. Epub 2018 Apr 20.

Moving from frugivory to seed dispersal: Incorporating the functional outcomes of interactions in plant-frugivore networks

Affiliations

Moving from frugivory to seed dispersal: Incorporating the functional outcomes of interactions in plant-frugivore networks

Benno I Simmons et al. J Anim Ecol. 2018 Jul.

Abstract

There is growing interest in understanding the functional outcomes of species interactions in ecological networks. For many mutualistic networks, including pollination and seed dispersal networks, interactions are generally sampled by recording animal foraging visits to plants. However, these visits may not reflect actual pollination or seed dispersal events, despite these typically being the ecological processes of interest. Frugivorous animals can act as seed dispersers, by swallowing entire fruits and dispersing their seeds, or as pulp peckers or seed predators, by pecking fruits to consume pieces of pulp or seeds. These processes have opposing consequences for plant reproductive success. Therefore, equating visitation with seed dispersal could lead to biased inferences about the ecology, evolution and conservation of seed dispersal mutualisms. Here, we use natural history information on the functional outcomes of pairwise bird-plant interactions to examine changes in the structure of seven European plant-frugivore visitation networks after non-mutualistic interactions (pulp pecking and seed predation) have been removed. Following existing knowledge of the contrasting structures of mutualistic and antagonistic networks, we hypothesized a number of changes following interaction removal, such as increased nestedness and lower specialization. Non-mutualistic interactions with pulp peckers and seed predators occurred in all seven networks, accounting for 21%-48% of all interactions and 6%-24% of total interaction frequency. When non-mutualistic interactions were removed, there were significant increases in network-level metrics such as connectance and nestedness, while robustness decreased. These changes were generally small, homogenous and driven by decreases in network size. Conversely, changes in species-level metrics were more variable and sometimes large, with significant decreases in plant degree, interaction frequency, specialization and resilience to animal extinctions and significant increases in frugivore species strength. Visitation data can overestimate the actual frequency of seed dispersal services in plant-frugivore networks. We show here that incorporating natural history information on the functions of species interactions can bring us closer to understanding the processes and functions operating in ecological communities. Our categorical approach lays the foundation for future work quantifying functional interaction outcomes along a mutualism-antagonism continuum, as documented in other frugivore faunas.

  1. Existe un interés creciente en comprender las consecuencias funcionales de las interacciones entre especies en redes ecológicas. Para muchas redes mutualistas, incluidas las de polinización y dispersión de semillas, las interacciones se muestrean generalmente registrando las visitas de consumo que los animales realizan en las plantas. Sin embargo, tales visitas pueden no reflejar eventos reales de polinización o dispersión de semillas, a pesar de ser estos los procesos ecológicos de interés.

  2. Los animales frugívoros pueden actuar como dispersores de semillas, si ingieren los frutos y dispersan sus semillas, o como consumidores de pulpa o predadores de semillas, si picotean los frutos para consumir trozos de pulpa o depredar sus semillas. Estos procesos tienen consecuencias opuestas para el éxito reproductivo de las plantas. Por lo tanto, equiparar visitas a eventos de dispersión de semillas podría llevar a inferencias sesgadas sobre la ecología, evolución y conservación de este mutualismo planta‐animal.

  3. En este estudio usamos información de la historia natural sobre las consecuencias funcionales de interacciones pareadas planta‐ave para examinar los cambios en la estructura de siete redes europeas de frugivoría tras eliminar las visitas clasificables como interacciones no mutualistas (picoteo de pulpa y depredación de semillas). De acuerdo con el conocimiento existente sobre las estructuras contrastadas de redes mutualistas y antagonistas, formulamos hipótesis sobre los cambios esperados al eliminar las interacciones no mutualistas, como un mayor anidamiento y una menor especialización.

  4. Las interacciones no mutualistas, con picoteadores de pulpa y predadores de semillas, aparecieron en las siete redes, representando el 21‐48% de todas las interacciones y el 6‐24% de la frecuencia total de interacción. Cuando se eliminaron estas interacciones, hubo aumentos significativos en algunas métricas a nivel de red, como la conectancia y el anidamiento, pero disminuciones en otras como la robustez. Estos cambios fueron generalmente pequeños, homogéneos entre redes y generados por reducciones del tamaño de la red. Por el contrario, los cambios en las métricas a nivel de especie fueron más variables y a veces grandes, con disminuciones significativas en el grado de interacción de las plantas, así como en su frecuencia de interacción, especialización y resiliencia a las extinciones de animales, mientras que la fuerza de interacción de las aves aumentó significativamente.

  5. Los datos de visitas pueden sobreestimar la frecuencia real de los servicios de dispersión de semillas en las redes de frugivoría. Aquí mostramos cómo la incorporación de información de la historia natural sobre las funciones de las interacciones entre especies puede mejorar nuestra comprensión de los procesos que operan en las comunidades ecológicas. Nuestro enfoque categórico sienta las bases para un trabajo futuro que cuantifique las consecuencias funcionales de las interacciones a lo largo del continuo mutualismo‐antagonismo que se ha documentado para otras faunas frugívoras.

Keywords: antagonism; ecological networks; fleshy fruits; frugivorous birds; mutualism; mutualistic networks; pulp pecking; seed predation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(a) Types of interactions between avian frugivores and fleshy fruits, and sign of the interaction from the plant's perspective. (b) Location and codes (roman numbers and colours) of the bird‐fruit visitation networks included in this study (I: P. Jordano, unpublished; II: García, 2016; III: Sorensen, 1981; IV: Snow & Snow, 1988; V: Plein et al., 2013; VI: Stiebel & Bairlein, 2008; VII: Farwig et al., 2017). (c) Representation of one of the studied networks (III); note that some frugivore species can have different interaction types depending on the plant species they feed on. (d) Frequency (%) of the different interaction types in the studied networks in terms of identity and quantity [Colour figure can be viewed at http://wileyonlinelibrary.com]
Figure 2
Figure 2
The composition of species’ links (a, b) and interaction frequency (c, d) for each plant (a, c) and bird (b, d) species across all networks. Each bar shows the proportion of a species’ links or interaction frequency which are seed dispersal (mutualistic), pulp pecking or seed predation (non‐mutualistic). Species are placed in order of decreasing proportion of links or interaction frequency, which are seed dispersal [Colour figure can be viewed at http://wileyonlinelibrary.com]
Figure 3
Figure 3
Changes (y‐axes) in the studied network‐level metrics after the removal of non‐mutualistic interactions (seed predation and pulp pecking). Colour codes denote network identity (see Figure 1b). The black diamonds are mean values across networks. The dashed line is x, indicating the position of points if there was no change in metric values. The significance of Wilcoxon matched pairs tests is shown in the top‐left corner of the panels (ns: non‐significant; *p < .05; **< .01). Unless specified, all Spearman's ρ are significant (ρ ≥ .75, < .05); we consider a non‐significant ρ to indicate a change in the ranks across networks [Colour figure can be viewed at http://wileyonlinelibrary.com]
Figure 4
Figure 4
Changes (y‐axes) in species‐level metrics for plants (a–d) and frugivores (e) after the removal of non‐mutualistic interactions (seed predation and pulp pecking). Colour codes denote network identity (see Figure 1b). The dashed line is x, indicating the position of points if there was no change in metric values. Points below the horizontal black lines in panels (a) and (b) highlight those species that lose all their partners (a: degree) and interactions (b: frequency) after pruning. The significance of Wilcoxon matched pairs tests is shown in the top‐left corner of the panels (***< .001)

Similar articles

Cited by

References

    1. Albrecht, J. , Neuschulz, E. L. , & Farwig, N. (2012). Impact of habitat structure and fruit abundance on avian seed dispersal and fruit predation. Basic and Applied Ecology, 13, 347–354. 10.1016/j.baae.2012.06.005 - DOI
    1. Almeida‐Neto, M. , & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software, 26, 173–178. 10.1016/j.envsoft.2010.08.003 - DOI
    1. Ballantyne, G. , Baldock, K. C. R. , & Willmer, P. G. (2015). Constructing more informative plant–pollinator networks: Visitation and pollen deposition networks in a heathland plant community. Proceedings of the Royal Society of London. Series B: Biological Sciences, 282, 20151130 10.1098/rspb.2015.1130 - DOI - PMC - PubMed
    1. Bascompte, J. (2010). Structure and dynamics of ecological networks. Science, 329, 765–766. 10.1126/science.1194255 - DOI - PubMed
    1. Bascompte, J. , & Jordano, P. (2013). Mutualistic networks. Princeton, NJ: Princeton University Press; 10.1515/9781400848720 - DOI

Publication types