Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Oct;432(2):283-90.
doi: 10.1016/0165-3806(87)90053-8.

Developmental and age-related changes in D1-dopamine receptors and dopamine content in the rat striatum

Affiliations

Developmental and age-related changes in D1-dopamine receptors and dopamine content in the rat striatum

O Giorgi et al. Brain Res. 1987 Oct.

Abstract

The relationship between the postnatal development of dopaminergic (DAergic) nerve endings and the maturation of D1 DA receptors in the rat striatum was analyzed by measuring the content of DA and dihydroxyphenylacetic acid (DOPAC), two biochemical markers of DAergic nerve terminal proliferation, and the ontogenetic changes in [3H]SCH 23390 binding sites. DA-stimulated adenylate cyclase (AC) activity was also measured in order to characterize the coupling of [3H]SCH 23390 binding sites to the responses mediated by the activation of D1 DA receptors. Striatal levels of DA and DOPAC, as well as the density and affinity of [3H]SCH 23390 binding sites and DA-stimulated AC activity were also measured in senescent rats. The striatal content of DA increased slowly after birth, reaching adult levels by postnatal day 60 and remaining constant through adulthood and senescence (up to 20 months of age). The density of [3H]SCH 23390 binding sites increased 14-fold from birth to postnatal day 35, when a peak value was reached, whereas a significant decrease was observed in the striatum of aged rats. In contrast, the affinity of D1 DA receptors for [3H]SCH 23390 remained unchanged from birth through senescence. The stimulation of cyclic AMP formation induced by 100 microM DA increased 4-fold from birth to postnatal day 14, when the maximal responsiveness to DA was observed and then returned to adult levels. No significant alterations were observed in the Km values during development, whereas the stimulatory effect of 100 microM DA on AC activity was significantly decreased in senescent rats.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources