Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul:128:1-9.
doi: 10.1016/j.ejpb.2018.03.012. Epub 2018 Mar 29.

Biopolymer nanogels improve antibacterial activity and safety profile of a novel lysine-based α-peptide/β-peptoid peptidomimetic

Affiliations

Biopolymer nanogels improve antibacterial activity and safety profile of a novel lysine-based α-peptide/β-peptoid peptidomimetic

Sylvia Natalie Kłodzińska et al. Eur J Pharm Biopharm. 2018 Jul.

Abstract

Infections caused by Pseudomonas aeruginosa are associated with high morbidity and mortality, especially in immunocompromised patients. These bacteria frequently grow within a biofilm matrix, rendering therapy with conventional antibiotics inefficient; a fact that emphasizes the need for new treatment strategies. Antimicrobial peptidomimetics constitute potential alternatives to traditional antimicrobial agents. However, their application remains limited due to the lack of efficient delivery to their target site in vivo and the risk of high systemic toxicity. Nanogels composed of cross-linked networks of amphiphilic polymers with a therapeutic drug molecule embedded constitute attractive drug delivery systems, as they have been shown to display unique properties such as biocompatibility and biodegrability, as well as confer improved drug stability and reduced drug-mediated cytotoxicity. Here, we report on the first formulation of biopolymer nanogels incorporating a potent antibacterial peptidomimetic. A lysine-based α-peptide/β-peptoid hybrid with potent activity against P. aeruginosa was designed and formulated into a nanogel together with octenyl succinic anhydride-modified hyaluronic acid in order to improve its cell selectivity. Twelve nanogel formulations were prepared by using a design of experiments setup in order to identify the parameters yielding the highest drug loading and the smallest particle size. Encapsulation of the peptidomimetic into nanogels significantly decreased the cytotoxicity of the peptidomimetic to eukaryotes. The most promising formulation with high encapsulation efficiency (88%) of the peptidomimetic demonstrated a three-fold reduction in cytotoxicity towards hepatocytes along with improved bacterial killing kinetics.

Keywords: Antimicrobial peptides; Drug delivery; Infection; Nanogel; Peptidomimetics; Pseudomonas aeruginosa.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources