Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Nov 15;262(32):15476-82.

Insulin and insulin-like growth factor-I stimulate a common endogenous phosphoprotein substrate (pp185) in intact neuroblastoma cells

Affiliations
  • PMID: 2960669
Free article

Insulin and insulin-like growth factor-I stimulate a common endogenous phosphoprotein substrate (pp185) in intact neuroblastoma cells

J Shemer et al. J Biol Chem. .
Free article

Abstract

Mouse neuroblastoma N18 cells contain specific high affinity insulin and insulin-like growth factor-I (IGF-I) receptors. Insulin and IGF-I induce phosphorylation, in intact cells, of their respective receptor beta subunits. The insulin receptor beta subunit is represented by a 95-kDa phosphoprotein that is recognized by a specific antiserum (B10). The IGF-I receptor beta subunit is represented by two phosphoproteins of molecular mass 95 and 105 kDa. The hormone-induced phosphorylation was rapid and dose-dependent occurring on both phosphoserine and phosphotyrosine residues. In addition, both insulin and IGF-I induced phosphorylation of an endogenous protein of molecular mass 185 kDa (pp185). The rapidity and dose dependency of the phosphorylation of pp185 suggested that it may represent a common endogenous substrate for the insulin and IGF-I receptors in these neural-derived cells. Phosphorylation was primarily on phosphoserine and phosphotyrosine residues. pp185 did not absorb to wheat germ agglutinin-agarose and was not stimulated by either epidermal growth factor or platelet-derived growth factor. The finding of pp185 in these neural-related cells as well as in non-neural tissues suggests that it may represent a ubiquitous endogenous substrate for both the insulin and IGF-I receptor kinases.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources