Interpreting and Utilising Intersubject Variability in Brain Function
- PMID: 29609894
- PMCID: PMC5962820
- DOI: 10.1016/j.tics.2018.03.003
Interpreting and Utilising Intersubject Variability in Brain Function
Abstract
We consider between-subject variance in brain function as data rather than noise. We describe variability as a natural output of a noisy plastic system (the brain) where each subject embodies a particular parameterisation of that system. In this context, variability becomes an opportunity to: (i) better characterise typical versus atypical brain functions; (ii) reveal the different cognitive strategies and processing networks that can sustain similar tasks; and (iii) predict recovery capacity after brain damage by taking into account both damaged and spared processing pathways. This has many ramifications for understanding individual learning preferences and explaining the wide differences in human abilities and disabilities. Understanding variability boosts the translational potential of neuroimaging findings, in particular in clinical and educational neuroscience.
Keywords: brain structure; cognitive strategies; covariance; functional variability; individualised predictions; neuroimaging.
Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Figures





Similar articles
-
The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability.Neuroimage. 2019 Nov 15;202:115990. doi: 10.1016/j.neuroimage.2019.07.003. Epub 2019 Jul 7. Neuroimage. 2019. PMID: 31291606 Free PMC article.
-
Individual variability is not noise.Trends Cogn Sci. 2013 Apr;17(4):153-5. doi: 10.1016/j.tics.2013.02.003. Epub 2013 Mar 15. Trends Cogn Sci. 2013. PMID: 23507449
-
Individual differences and time-varying features of modular brain architecture.Neuroimage. 2017 May 15;152:94-107. doi: 10.1016/j.neuroimage.2017.02.066. Epub 2017 Feb 24. Neuroimage. 2017. PMID: 28242315
-
Degenerate neuronal systems sustaining cognitive functions.J Anat. 2004 Dec;205(6):433-42. doi: 10.1111/j.0021-8782.2004.00343.x. J Anat. 2004. PMID: 15610392 Free PMC article. Review.
-
Modeling Individual Differences in Brain Development.Biol Psychiatry. 2020 Jul 1;88(1):63-69. doi: 10.1016/j.biopsych.2020.01.027. Epub 2020 Feb 11. Biol Psychiatry. 2020. PMID: 32245576 Free PMC article. Review.
Cited by
-
Individual differences in frontoparietal plasticity in humans.NPJ Sci Learn. 2022 Jun 23;7(1):14. doi: 10.1038/s41539-022-00130-1. NPJ Sci Learn. 2022. PMID: 35739201 Free PMC article.
-
Personalizing neuromodulation.Int J Psychophysiol. 2020 Aug;154:101-110. doi: 10.1016/j.ijpsycho.2019.01.002. Epub 2019 Jan 24. Int J Psychophysiol. 2020. PMID: 30685229 Free PMC article. Review.
-
What Individuals Experience During Visuo-Spatial Working Memory Task Performance: An Exploratory Phenomenological Study.Front Psychol. 2022 May 18;13:811712. doi: 10.3389/fpsyg.2022.811712. eCollection 2022. Front Psychol. 2022. PMID: 35664146 Free PMC article.
-
Brain and behavioral alterations in subjects with social anxiety dominated by empathic embarrassment.Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4385-4391. doi: 10.1073/pnas.1918081117. Epub 2020 Feb 10. Proc Natl Acad Sci U S A. 2020. PMID: 32041879 Free PMC article.
-
Accurate prediction of individual subject identity and task, but not autism diagnosis, from functional connectomes.Hum Brain Mapp. 2020 Jun 15;41(9):2249-2262. doi: 10.1002/hbm.24943. Epub 2020 Mar 9. Hum Brain Mapp. 2020. PMID: 32150312 Free PMC article.
References
-
- Miller M.B. Individual differences in cognitive style and strategy predict similarities in the patterns of brain activity between individuals. Neuroimage. 2012;59:83–93. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources