Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jun;41(6):1233-1246.
doi: 10.1111/pce.13206.

New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations

Affiliations
Review

New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations

Dananjali Gamage et al. Plant Cell Environ. 2018 Jun.

Abstract

Rising atmospheric carbon dioxide concentration ([CO2 ]) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated [CO2 ] (e[CO2 ]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO2 ] is always associated with post-photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO2 ], despite the emerging evidence of e[CO2 ]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO2 ] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO2 ] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO2 ] have been identified with the aim of improving crop productivity under a CO2 rich atmosphere.

Keywords: carbon metabolism; cell cycle; climate change; elevated [CO2] (e[CO2]); hormonal metabolism; nitrogen metabolism; photosynthesis; plant growth mechanism; source-sink interactions.

PubMed Disclaimer

Publication types

MeSH terms