Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 4;18(1):9.
doi: 10.1186/s12861-018-0168-2.

Molecular signatures of epithelial oviduct cells of a laying hen (Gallus gallus domesticus) and quail (Coturnix japonica)

Affiliations

Molecular signatures of epithelial oviduct cells of a laying hen (Gallus gallus domesticus) and quail (Coturnix japonica)

Katarzyna Stadnicka et al. BMC Dev Biol. .

Abstract

Background: In this work we have determined molecular signatures of oviduct epithelial and progenitor cells. We have proposed a panel of selected marker genes, which correspond with the phenotype of oviduct cells of a laying hen (Gallus gallus domesticus) and quail (Coturnix japonica). We demonstrated differences in characteristics of those cells, in tissue and in vitro, with respect to different anatomical and functional parts of the oviduct (infundibulum (INF), distal magnum (DM, and proximal magnum (PM)). The following gene expression signatures were studied: (1) oviduct markers (estrogen receptor 1, ovalbumin, and SPINK7 - ovomucoid), (2) epithelial markers (keratin 5, keratin 14, and occludin) and (3) stem-like/progenitor markers (CD44 glycoprotein, LGR5, Musashi-1, and sex determining region Y-box 9, Nanog homebox, OCT4/cPOUV gene encoding transcription factor POU5F3).

Results: In chicken, the expression of oviduct markers increased toward the proximal oviduct. Epithelial markers keratin14 and occludin were high in distal oviduct and decreased toward the proximal magnum. In quail oviduct tissue, the gene expression pattern of oviduct/epithelial markers was similar to chicken. The markers of progenitors/stemness in hen oviduct (Musashi-1 and CD44 glycoprotein) had the highest relative expression in the infundibulum and decreased toward the proximal magnum. In quail, we found significant expression of four progenitor markers (LGR5 gene, SRY sex determining region Y-box 9, OCT4/cPOUV gene, and CD44 glycoprotein) that were largely present in the distal oviduct. After in vitro culture of oviduct cells, the gene expression pattern has changed. High secretive potential of magnum-derived cells diminished by using decreased abundance of mRNA. On the other hand, chicken oviduct cells originating from the infundibulum gained ability to express OVM and OVAL. Epithelial character of the cells was maintained in vitro. Among progenitor markers, both hen and quail cells expressed high level of SOX9, LGR5 and Musashi-1.

Conclusion: Analysis of tissue material revealed gradual increase/decrease pattern in majority of the oviduct markers in both species. This pattern changed after the oviductal cells have been cultured in vitro. The results can provide molecular tools to validate the phenotype of in vitro biological models from reproductive tissue.

Keywords: Epithelial cells; Laying hen; Laying quail; Molecular signatures; Oviduct; Progenitor cells.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Local Ethics Committee for Animal Research (http://lke.utp.edu.pl) located at the Faculty of Animal Breeding and Biology, UTP University of Science and Technology in Bydgoszcz (study approval reference number 35/2012).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
A graphical representation of selected panel of epithelial genetic markers associated with oviduct cells. Three panels of epithelial genetic markers were proposed to provide a pattern of molecular signatures in the oviduct of hen and quail in 3 compartments: INF – infundibulum, DM – distal magnum, PM – proximal magnum. The first panel shown in the picture refers to stem-like markers: Nanog homebox (NANOG), octamer-binding protein 4 (OCT4/cPOUV) and sex determining region Y-box 9 (SOX9); and epithelial progenitor cells: cell surface glycoprotein CD44, leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), and Musashi-1 (MSI-1). The second panel refers to epithelial cells: keratins KRT 5 and 14 and occludin (OCLN). The third panel refers to functional avian oviduct cells: estrogen receptor-1 (ESR1), ovalbumin (OVAL) and ovomucoid (OVM)
Fig. 2
Fig. 2
Phenotypes displayed by hen and quail oviduct cell colonies in vitro. ab: confluent monolayers and visible spheres of colony-initiating cells isolated from the region of infundibulum neck (INF); magnification: × 100. cd: confluent monolayers of epithelial cells isolated from distal magnum (DM), showing typical cobble-like morphology; magnification × 100. ef: confluent epithelial monolayer, typically observed in cultivated cells that are originating from the oviduct magnum, showing mostly fibroblast-like morphology; magnification × 100. In each case, the cells were seeded at a density of 4 × 104 cells/cm2
Fig. 3
Fig. 3
Expression of oviduct, epithelial, and progenitor markers in different fragments of hen (a) and quail (b) oviduct tissue. Relative gene expression analysis was conducted with RT-qPCR method in three oviduct fragments: infundibulum (INF), distal magnum (DM) and proximal magnum (PM). Pairwise t-test was conducted to determine the significant modulation of the gene expression in the oviduct as compared to the external calibrator (breast muscle) (P < 0.05). An asterisk (*) indicates that the gene is differentially expressed, compared to the calibrator. Letters A, B, and C in brackets indicate results of one-way ANOVA multiple comparisons between different fragments of the oviduct (P < 0.05)
Fig. 4
Fig. 4
Expression of oviduct, epithelial, and progenitor markers in chicken (a) and quail (b) oviduct epithelial cells. Relative gene expression analysis was performed with RT-qPCR method in three oviduct fragments: infundibulum (INF), distal magnum (DM) and proximal magnum (PM). Pairwise t-test was conducted to determine the significant modulation of the gene expression in the oviduct as compared to the external calibrator (breast muscle) (P < 0.05). An asterisk (*) indicates that the gene is differentially expressed, compared to the calibrator. Letters A, B, and C in brackets indicate results of one-way ANOVA multiple comparisons between different fragments of the oviduct (P < 0.05)

Similar articles

Cited by

References

    1. Trevino LS, Johnson PA. Estrogen receptor subtype expression is altered in the hen model of ovarian Cancer. J Mol Genet Med 2016;10. 10.4172/1747-0862.1000203.
    1. Doran TJ, Cooper CA, Jenkins KA, Tizard MLV. Advances in genetic engineering of the avian genome: “Realising the promise.”. Transgenic Res. 2016;25:307–319. doi: 10.1007/s11248-016-9926-8. - DOI - PubMed
    1. Cao D, Wu H, Li Q, Sun Y, Liu T, Fei J, et al. Expression of recombinant human lysozyme in egg whites of transgenic hens. PLoS One 2015;10. 10.1371/journal.pone.0118626. - PMC - PubMed
    1. Zhang Z, Sun P, Yu F, Yan L, Yuan F, Zhang W, et al. Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels. PLoS One. 2012;7:e50817. doi: 10.1371/journal.pone.0050817. - DOI - PMC - PubMed
    1. Kwon SC, Choi JW, Jang H-J, Shin SS, Lee SK, Park TS, et al. Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biol Reprod. 2010;82:1057–1064. doi: 10.1095/biolreprod.109.081687. - DOI - PubMed

Publication types