PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages
- PMID: 29617722
- DOI: 10.1093/cvr/cvy079
PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages
Erratum in
-
Corrigendum to: PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages.Cardiovasc Res. 2022 Jun 22;118(7):1849. doi: 10.1093/cvr/cvab354. Cardiovasc Res. 2022. PMID: 34904641 No abstract available.
Abstract
Aims: Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been shown to influence macrophage biology and modulate atherogenesis. We conducted this study to examine the regulation of scavenger receptors (SRs) (LOX-1, SRA, and CD36) and oxidized liporoptein cholesterol (ox-LDL) uptake in macrophages by PCSK9.
Methods and results: Treatment of mouse peritoneal macrophages with tumour necrosis factor alpha (TNF-α) resulted in concentration-dependent modest, but significant, increase in PCSK9 expression. Importantly, treatment of TNF-α primed macrophages with recombinant murine PCSK9 increased the expression of LOX-1, SRA, and CD36 2-5 fold, and enhanced ox-LDL uptake by ≈five-fold. The increase in LOX-1 was much greater than in SRA or CD36. PCSK9 inhibition (by siRNA transfection or use of macrophages from PCSK9-/- mice) reduced the expression of SRs (LOX-1 ≫ SRA or CD36). Ox-LDL uptake in response to PCSK9 was also inhibited in macrophages from LOX-1-/- mice (P < 0.05 vs. macrophages from SRA-/- and CD36-/- mice). Upregulation of PCSK9 by cDNA transfection induced intense ox-LDL uptake which was inhibited by co-transfection of cells with siRNA LOX-1 (P < 0.05 vs. siRNA SRA or siRNA CD36). Further, TNF-α-mediated PCSK9 upregulation and subsequent expression of SRs and ox-LDL uptake were reduced in macrophages from gp91phox-/-, p47phox-/- and p22phox-/- mice (vs. macrophages from wild-type mice).
Conclusions: This study shows that in an inflammatory milieu, elevated levels of PCSK9 potently stimulate the expression of SRs (principally LOX-1) and ox-LDL uptake in macrophages, and thus contribute to the process of atherogenesis.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
