Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan 15;140(2):388-94.

Studies on the capacity of intact cells and purified Ia from different B cell sources to function in antigen presentation to T cells

Affiliations
  • PMID: 2961812

Studies on the capacity of intact cells and purified Ia from different B cell sources to function in antigen presentation to T cells

J Krieger et al. J Immunol. .

Abstract

In this study we have evaluated some of the potential mechanisms that may be responsible for the inefficiency with which resting B cells function as antigen-presenting cells (APC) and the mechanism by which that function is enhanced following treatment of B cells with neuraminidase. One mechanism that has been previously suggested is that glycosylation differences in Ia associated with different APC accounts for the different functional capacities of resting and activated B cells. It has been postulated that removal of sialic acid from resting B cell Ia results in a correction of its antigen-presenting defect. To study this possibility, we have used purified I-Ad from different B cell sources in a planar membrane system to present an immunogenic peptide of chicken ovalbumin (Ova) to an I-Ad-restricted Ova-specific T cell hybridoma. It was found that I-Ad isolated from resting B cells, B cell stimulatory factor 1 (BSF-1) or lipopolysaccharide and dextran sulfate-stimulated B cells, or A20 B lymphoma cells were all equivalent in their antigen-presenting capacity. Furthermore, removal of sialic acid from Ia did not enhance its capacity to serve as a restriction element. The mechanism by which neuraminidase treatment enhances B cell APC function was further investigated by studying the effect of sialic acid removal on a primary mixed leukocyte reaction (MLR). When allogeneic fixed B cells were used as stimulator cells it was found that neither resting nor BSF-1-stimulated B cells could induce a MLR. Following neuraminidase treatment, BSF-1-treated B cells, but not resting B cells, were capable of stimulating a MLR. However, a MLR was also stimulated by allogeneic BSF-1-treated B cells when the responder T cells, rather than the stimulator cells, were treated with neuraminidase. An enhancing effect similar to that obtained by neuraminidase treatment could be obtained by the addition of 2% polyethylene glycol to the MLR culture. These data suggest that the inability of BSF-1-stimulated cells to function efficiently as accessory cells in stimulating a primary MLR is due to their relative inability to interact physically with T cells, a deficiency that is overcome by neuraminidase treatment of either T or B cell populations or by the addition of polyethylene glycol to the culture. Although the reason for the failure of these same treatments to restore the accessory cell function of resting B cells is not known, some possible mechanisms are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources