Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 2;10(17):14767-14776.
doi: 10.1021/acsami.8b02425. Epub 2018 Apr 17.

Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example

Affiliations

Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example

Tao Gao et al. ACS Appl Mater Interfaces. .

Abstract

Magnesium redox chemistry is a very appealing "beyond Li ion chemistry" for realizing high energy density batteries due to the high capacity, low reduction potential, and most importantly, highly reversible and dendrite-free Mg metal anode. However, the progress of rechargeable Mg batteries has been greatly hindered by shortage of electrolytes with wide stability window, high ionic conductivity, and good compatibility with cathode materials. Unlike solid electrolyte interphase on Li metal anode, surface film formed by electrolyte decomposition in Mg batteries was considered to block Mg ion transport and passivate Mg electrode. For this reason, the attention of the community has been mainly focusing on surface layer free electrolytes, while reductively unstable salts/solvents are barely considered, despite many of them possessing all the necessary properties for good electrolytes. Here, for the first time, we demonstrate that the surface film formed by electrolyte decomposition can function as a solid electrolyte interphase (SEI). Using Mg/S chemistry as a model system, the SEI formation mechanism on Mg metal anode was thoroughly examined using electrochemical methods and surface chemistry characterization techniques such as EDX and XPS. On the basis of these results, a comprehensive view of the Mg/electrolyte interface that unifies both the SEI mechanism and the passivation layer mechanism is proposed. This new picture of surface layer on Mg metal anode in Mg batteries not only revolutionizes current understanding of Mg/electrolyte interface but also opens new avenues for electrolyte development by uncovering the potential of those reductively unstable candidates through interface design.

Keywords: electrochemistry; electrolyte; magnesium battery; solid electrolyte interphase; sulfur; surface chemistry.

PubMed Disclaimer

LinkOut - more resources