Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2018 Jun;46(7):1711-1719.
doi: 10.1177/0363546518764685. Epub 2018 Apr 5.

Into-Tunnel Repair Versus Onto-Surface Repair for Rotator Cuff Tears in a Rabbit Model

Affiliations
Comparative Study

Into-Tunnel Repair Versus Onto-Surface Repair for Rotator Cuff Tears in a Rabbit Model

Xiaoxi Li et al. Am J Sports Med. 2018 Jun.

Abstract

Background: Clinically, onto-surface repair is commonly used for rotator cuff tears. The retear rate after rotator cuff repair (RCR) is relatively high, with failure occurring mostly at the tendon-bone connection site. For anterior cruciate ligament (ACL) reconstruction, into-tunnel reconstruction is commonly employed. The retear rate after ACL reconstruction is relatively low, with retears seldom occurring at the tendon-bone interface. No study on into-tunnel RCR has been conducted.

Hypothesis: Into-tunnel RCR could promote fibrocartilage regeneration at the tendon-bone interface and has biomechanical advantage over onto-surface repair in a rabbit rotator cuff tear model.

Study design: Controlled laboratory study.

Methods: Thirty-six New Zealand White rabbits were used in this study. The supraspinatus tendons were cut from the footprint to create a rotator cuff tear on both shoulders. On one side, the supraspinatus was cut longitudinally into 2 halves, sutured, and pulled into 2 tunnels through the greater tuberosity (into-tunnel repair). On the other side, the tendon was reattached to the surface of the footprint with transosseous sutures (onto-surface repair). Twelve animals were sacrificed, of which 6 were used for a histological examination and the other 6 for biomechanical testing, at 4, 8, and 12 weeks, respectively.

Results: The tendon-bone interface in the into-tunnel group showed a different healing pattern from that in the onto-surface group. In the former, most of the tendon tissue in the tunnel was replaced with newly generated fibrocartilage; the rest of the tendon fibers appeared in large bundles with direct connection to the bone. In the latter, fibrocartilage regeneration was seldom found at the tendon-bone interface; the tendon near the bone surface appeared as small fibrils. The biomechanical evaluation revealed a higher ultimate load ( P < .001) and stiffness ( P < .001) at the tendon-bone junction in the into-tunnel group than those in the onto-surface group at 12 weeks.

Conclusion: In a rabbit rotator cuff tear model, into-tunnel RCR could result in a different tendon-bone healing pattern, with obvious fibrocartilage regeneration at the interface and higher tendon-bone healing strength than that in onto-surface repair.

Clinical relevance: New RCR patterns may be developed to improve the tendon-bone healing pattern and obtain better tendon-bone healing strength.

Keywords: fibrocartilage; into-tunnel repair; rotator cuff; tendon-bone healing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources