Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 6;67(13):396-401.
doi: 10.15585/mmwr.mm6713e1.

Vital Signs: Containment of Novel Multidrug-Resistant Organisms and Resistance Mechanisms - United States, 2006-2017

Vital Signs: Containment of Novel Multidrug-Resistant Organisms and Resistance Mechanisms - United States, 2006-2017

Kate Russell Woodworth et al. MMWR Morb Mortal Wkly Rep. .

Abstract

Background: Approaches to controlling emerging antibiotic resistance in health care settings have evolved over time. When resistance to broad-spectrum antimicrobials mediated by extended-spectrum β-lactamases (ESBLs) arose in the 1980s, targeted interventions to slow spread were not widely promoted. However, when Enterobacteriaceae with carbapenemases that confer resistance to carbapenem antibiotics emerged, directed control efforts were recommended. These distinct approaches could have resulted in differences in spread of these two pathogens. CDC evaluated these possible changes along with initial findings of an enhanced antibiotic resistance detection and control strategy that builds on interventions developed to control carbapenem resistance.

Methods: Infection data from the National Healthcare Safety Network from 2006-2015 were analyzed to calculate changes in the annual proportion of selected pathogens that were nonsusceptible to extended-spectrum cephalosporins (ESBL phenotype) or resistant to carbapenems (carbapenem-resistant Enterobacteriaceae [CRE]). Testing results for CRE and carbapenem-resistant Pseudomonas aeruginosa (CRPA) are also reported.

Results: The percentage of ESBL phenotype Enterobacteriaceae decreased by 2% per year (risk ratio [RR] = 0.98, p<0.001); by comparison, the CRE percentage decreased by 15% per year (RR = 0.85, p<0.01). From January to September 2017, carbapenemase testing was performed for 4,442 CRE and 1,334 CRPA isolates; 32% and 1.9%, respectively, were carbapenemase producers. In response, 1,489 screening tests were performed to identify asymptomatic carriers; 171 (11%) were positive.

Conclusions: The proportion of Enterobacteriaceae infections that were CRE remained lower and decreased more over time than the proportion that were ESBL phenotype. This difference might be explained by the more directed control efforts implemented to slow transmission of CRE than those applied for ESBL-producing strains. Increased detection and aggressive early response to emerging antibiotic resistance threats have the potential to slow further spread.

PubMed Disclaimer

Conflict of interest statement

No conflicts of interest were reported.

Figures

FIGURE 1
FIGURE 1
Percentage of Escherichia coli and Klebsiella pneumoniae isolates from selected health care–associated infections* with the extended-spectrum-β-lactamase (ESBL) phenotype reported as nonsusceptible to extended-spectrum cephalosporins — National Healthcare Safety Network, United States, 2006–2015 * Central line–associated bloodstream infections and catheter-associated urinary tract infections. Nonsusceptible to at least one extended-spectrum cephalosporin.
FIGURE 2
FIGURE 2
Percentage of Escherichia coli and Klebsiella pneumoniae isolates from selected health care–associated infections* reported as resistant to a carbapenem — National Healthcare Safety Network, United States, 2006–2015 * Central line–associated bloodstream infections and catheter-associated urinary tract infections.

References

    1. Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol 2016;37:1288–1301.10.15585/mmwr.mm6509e1 - DOI - PMC - PubMed
    1. Jacoby GA, Medeiros AA, O’Brien TF, Pinto ME, Jiang H. Broad-spectrum, transmissible beta-lactamases. N Engl J Med 1988;319:723–4. 10.1056/NEJM198809153191114 - DOI - PubMed
    1. Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001;45:1151–61. 10.1128/AAC.45.4.1151-1161.2001 - DOI - PMC - PubMed
    1. Schwaber MJ, Carmeli Y. An ongoing national intervention to contain the spread of carbapenem-resistant Enterobacteriaceae. Clin Infect Dis 2014;58:697–703. 10.1093/cid/cit795 - DOI - PubMed
    1. Landman D, Bratu S, Kochar S, et al. Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J Antimicrob Chemother 2007;60:78–82. 10.1093/jac/dkm129 - DOI - PubMed

MeSH terms