Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun;104(3):250-255.
doi: 10.1016/j.yexmp.2018.03.007. Epub 2018 Apr 3.

Stromal vascular fraction promotes fibroblast migration and cellular viability in a hyperglycemic microenvironment through up-regulation of wound healing cytokines

Affiliations

Stromal vascular fraction promotes fibroblast migration and cellular viability in a hyperglycemic microenvironment through up-regulation of wound healing cytokines

Shaun S Tan et al. Exp Mol Pathol. 2018 Jun.

Abstract

Diabetic wounds have impaired healing and a propensity for further morbidity, which may result in amputations. Stromal vascular fraction (SVF) is an autologous source of heterogeneous cell population obtained from adipose tissue, which is rich in stem cells and presents little immunogenicity to the host. In this study, we hypothesized that murine fibroblasts subjected to hyperglycemic conditions co-treated with SVF exhibit greater functional activity through the colorimetric MTT assay and a cell-monolayer in-vitro scratch assay. We sought to establish the underlying mechanism of action via the utility of an ELISA chemiluminescence array on the supernatant medium of the cells. Our results demonstrate that the mean percentage gap closure at 24 h in the hyperglycemia + SVF group was significantly greater at 41.1% ± 1.6% compared to the hyperglycemia alone group 16.6% ± 1.5% (post-hoc Bonferroni test p < 0.001, n = 3) although there was no difference between the SVF and normoglycemia group. Further, this SVF group exhibited a significantly greater 2.4 fold increase in fibroblastic cell viability as compared to the hyperglycemia alone group (p = 0.001, n = 3). The supernatant medium of the cells upon testing with ELISA indicated that early phase wound healing cytokines including platelet-derived growth factor (p = 0.012, n = 3), interleukin-1 (p = 0.003, n = 3), basic fibroblast growth factor (p = 0.003, n = 3) and interleukin-10 (p = 0.009, n = 3) were expressed in significantly greater relative luminescent units in SVF as compared to hyperglycemia alone groups (Student t-test). Taken together and for the first time, our study shows that SVF is a promising therapeutic agent for up-regulating fibroblastic activity in a hyperglycemic microenvironment, and this result can be explained in part by the stimulation of wound-healing cytokines.

Keywords: Cell migration; Fibroblasts; Stem cells; Tissue engineering; Wound healing.

PubMed Disclaimer

Publication types

LinkOut - more resources