Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul:183:43-56.
doi: 10.1016/j.actatropica.2018.04.009. Epub 2018 Apr 3.

Artificial blood feeders for mosquito and ticks-Where from, where to?

Affiliations
Review

Artificial blood feeders for mosquito and ticks-Where from, where to?

Donato Romano et al. Acta Trop. 2018 Jul.

Abstract

Mosquito and tick feeding activity represent a key threat for humans, livestock, pets and wildlife worldwide. Rearing these vectors in laboratory conditions is extremely important to investigate basic facets of their biology, vector competence, new control strategies, as well as mechanisms of pesticide resistance. However, the use of animals or humans to provide blood for hematophagous arthropod feeding poses a strict limit to these researches, due to the accidental transmission of diseases, ethical problems concerning animal welfare, as well as expensive and time-consuming animal rearing procedures. The use of devices to artificially feed arthropod vectors can importantly leverage progresses in parasitology and entomology. The aim of this review is to summarize current knowledge about artificial feeding of mosquitoes and ticks, focusing on key concepts and case studies about the design and fabrication of blood feeding devices. From a technical standpoint, the literature analyzed here showed little standardization of materials used for fabricating membrane interfaces, as well as in the strategy used to heat the "biomimetic host". In addition, a lack of uniform methods to design an architecture merging complex and realistic cues with an easy-to-assemble approach have been found. Some commercial products are available, but they are quite expensive, thus hard to reach for many laboratories, especially in developing countries. An important challenge for future research is represented by the introduction of automation and bioinspired engineered solutions in these devices, improving the effectiveness of blood-feeding systems by increasing their host-mimicking features. Automation can reduce labor costs and provide interesting solutions - in line with the 3R principle "reduce, replace and refine" - aimed to minimize the employ of experimental animals in research.

Keywords: Anaplasmosis; Automation; Bio-hybrid systems; Bloodsucking insects; Chikungunya; Culicidae; Dengue; Ixodiidae; Malaria; Mass-rearing; Tick-borne diseases; Vector biology; West Nile virus; Yellow fever; Zika virus.

PubMed Disclaimer