Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Feb 1;37(3):491-5.
doi: 10.1016/0006-2952(88)90219-5.

Irreversible inhibition of the TXA2/PGH2 receptor of human platelets by a photoaffinity ligand

Affiliations

Irreversible inhibition of the TXA2/PGH2 receptor of human platelets by a photoaffinity ligand

H Zehender et al. Biochem Pharmacol. .

Abstract

In order to tag the TXA2/PGH2 receptor of human platelets, we synthesized azido-BSP (= 4-[2-(4-azido-benzenesulfonylamino)-ethyl]phenoxyacetic acid), a photolabile derivative of the specific TXA2/PGH2 receptor antagonist sulotroban (= BM 13.177). If protected from UV light, azido-BSP competitively inhibited the shape change of human washed platelets stimulated by the TXA2 mimetic U 46619. Schild analysis revealed a pA2 = 6.7 (apparent KD = 0.2 mumol/l). Irreversible inhibition of the U 46619-induced platelet activation was achieved by irradiating for 5 min with UV light of 254 nm a platelet suspension containing azido-BSP. After subsequent washing, the platelets were stimulated with U 46619, ADP or PAF. Under these conditions azido-BSP inhibited the shape change, aggregation and [3H]serotonin release induced by U 46619 but not the shape change induced by ADP or PAF. The concentrations of azido-BSP which blocked the U 46619-induced [3H]serotonin release and the aggregation were 0.5 mumol/l and 1.0 mumol/l, respectively, whereas even 50.0 mumol/l of azido-BSP only partially inhibited the U 46619-stimulated shape change. Obviously, increasing numbers of thromboxane receptors have to be blocked in order to inhibit the [3H]serotonin release, the aggregation and the shape change. Even at an azido-BSP concentration equal to 250 times the apparent dissociation constant, enough receptor sites remained active to allow U 46619 to induce the shape change. In sulotroban was added prior to irradiation, the blocking effect of azido-BSP decreased with increasing concentrations of sulotroban. These results show that azido-BSP is a specific and high affinity ligand of the TXA2/PGH2 receptor and that it covalently links to the receptor under irradiation. Azido-BSP is a new tool to identify and characterize the TXA2/PGH2 receptor.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources