Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;32(8):1818-1822.
doi: 10.1038/s41375-018-0032-1. Epub 2018 Apr 7.

Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells

Affiliations

Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells

Pedro Casado et al. Leukemia. 2018 Aug.
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Association of differentiation, kinase activity, and sensitivity to kinase inhibitors in primary AML. a Sensitivity to MEKi as a function of FAB group. b CD expression across 30 cases and estimation of individual kinase activities in CDs+ and CDs− groups. c Sensitivity to kinase inhibitors as a function of CD pattern expression. Significance was assessed by Mann–Whitney test in a, c and with a z-test in b
Fig. 2
Fig. 2
Integration of genomic, phosphoproteomics, and mass cytometry data to rationalize kinase inhibitors sensitivity. a Viability of AML cells within the indicated genotype/phenotype groups after treatment with MEKi. b Sensitivity of NRAS/BRAF/CDs+ positive cells to MEKi as a function of the indicated factors. c FLT3/PKCi sensitivity of AML cells with the indicated phenotype/genotype. Phosphorylations are denoted as (hi) and (lo) based on a greater or lower phosphorylation than the median across all cases. Significance was assessed by Mann–Whitney test

References

    1. Workman P, Al-Lazikani B, Clarke PA. Genome-based cancer therapeutics: targets, kinase drug resistance and future strategies for precision oncology. Curr Opin Pharmacol. 2013;13:486–96. doi: 10.1016/j.coph.2013.06.004. - DOI - PubMed
    1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21. doi: 10.1056/NEJMoa1516192. - DOI - PMC - PubMed
    1. Cancer Genome Atlas Research Network, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74. - PMC - PubMed
    1. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34. doi: 10.1016/j.cell.2010.06.011. - DOI - PMC - PubMed
    1. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4. doi: 10.1038/nature11183. - DOI - PMC - PubMed

Publication types

MeSH terms