Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;156(2):503-512.e1.
doi: 10.1016/j.jtcvs.2018.01.107. Epub 2018 Mar 11.

Transesophageal echocardiographic strain imaging predicts aortic biomechanics: Beyond diameter

Affiliations
Free article

Transesophageal echocardiographic strain imaging predicts aortic biomechanics: Beyond diameter

Alexander Emmott et al. J Thorac Cardiovasc Surg. 2018 Aug.
Free article

Abstract

Background: Clinical guidelines recommend resection of ascending aortic aneurysms at diameters 5.5 cm or greater to prevent rupture or dissection. However, approximately 40% of all ascending aortic dissections occur below this threshold. We propose new transesophageal echocardiography strain-imaging moduli coupled with blood pressure measurements to predict aortic dysfunction below the surgical threshold.

Methods: A total of 21 patients undergoing aortic resection were recruited to participate in this study. Transesophageal echocardiography imaging of the aortic short-axis and invasive radial blood pressure traces were taken for 3 cardiac cycles. By using EchoPAC (GE Healthcare, Madison, Wis) and postprocessing in MATLAB (MathWorks, Natick, Mass), circumferential stretch profiles were generated and combined with the blood pressure traces. From these data, 2 in vivo stiffness moduli were calculated: the Cardiac Cycle Pressure Modulus and Cardiac Cycle Stress Modulus. From the resected aortic ring, testing squares were isolated for ex vivo mechanical analysis and histopathology. Each square underwent equibiaxial tensile testing to generate stress-stretch profiles for each patient. Two ex vivo indices were calculated from these profiles (energy loss and incremental stiffness) for comparison with the Cardiac Cycle Pressure Modulus and Cardiac Cycle Stress Modulus.

Results: The echo-derived stiffness moduli demonstrate positive significant covariance with ex vivo tensile biomechanical indices: energy loss (vs Cardiac Cycle Pressure Modulus: R2 = 0.5873, P < .0001; vs Cardiac Cycle Stress Modulus: R2 = 0.6401, P < .0001) and apparent stiffness (vs Cardiac Cycle Pressure Modulus: R2 = 0.2079, P = .0378; vs Cardiac Cycle Stress Modulus: R2 = 0.3575, P = .0042). Likewise, these transesophageal echocardiography-derived moduli are highly predictive of the histopathologic composition of collagen and elastin (collagen/elastin ratio vs Cardiac Cycle Pressure Modulus: R2 = 0.6165, P < .0001; vs Cardiac Cycle Stress Modulus: R2 = 0.6037, P < .0001).

Conclusions: Transesophageal echocardiography-derived stiffness moduli correlate strongly with aortic wall biomechanics and histopathology, which demonstrates the added benefit of using simple echocardiography-derived biomechanics to stratify patient populations.

Keywords: aneurysm; ascending aorta; biomechanics; echocardiography; histology.

PubMed Disclaimer

Comment in

  • Aortic diameter: The beginning of the end of an era.
    Gregory AJ, Di Martino E, Fedak PWM. Gregory AJ, et al. J Thorac Cardiovasc Surg. 2018 Aug;156(2):513-514. doi: 10.1016/j.jtcvs.2018.01.079. Epub 2018 Feb 13. J Thorac Cardiovasc Surg. 2018. PMID: 29510930 No abstract available.

LinkOut - more resources