Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov 9;9(2):288-299.
doi: 10.1039/c7sc03610h. eCollection 2018 Jan 14.

Challenges and opportunities for alkane functionalisation using molecular catalysts

Affiliations
Review

Challenges and opportunities for alkane functionalisation using molecular catalysts

Xinxin Tang et al. Chem Sci. .

Abstract

The conversion of vast low-value saturated hydrocarbons into valuable chemicals is of great interest. Thanks to the progression of organometallic and coordination chemistry, transition metal catalysed C sp3-H bond functionalisation has now become a powerful tool for alkane transformations. Specifically, methods for alkane functionalisation include radical initiated C-H functionalisation, carbene/nitrene insertion, and transition metal catalysed C-H bond activation. This perspective provides a systematic and concise overview of each protocol, highlighting the factors that govern regioselectivity in these reactions. The challenges of the existing catalytic tactics and future directions for catalyst development in this field will be presented.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Bond dissociation energies (BDEs) of primary, secondary, and tertiary C sp3–H bonds in an alkane.
Fig. 2
Fig. 2. Alkane functionalisation through a radical intermediate.
Fig. 3
Fig. 3. Alkane functionalisation via carbene insertion.
Scheme 1
Scheme 1. Pathways for metal-mediated C–H bond activation.
Fig. 4
Fig. 4. The design of various pincer Ir dehydrogenation catalysts.
Fig. 5
Fig. 5. Non-iridium metal dehydrogenation catalysts.
Fig. 6
Fig. 6. Applications of alkane metathesis.
Fig. 7
Fig. 7. Dehydroaromatization of alkanes.

References

    1. Labinger J. A., Bercaw J. E. Nature. 2002;417:507. - PubMed
    2. Goldman A. S. and Goldberg K. I., Activation and Functionalization of C–H Bonds, American Chemical Society, 2004, vol. 885, ch. 1, pp. 1–43.
    3. Bergman R. G. Nature. 2007;446:391. - PubMed
    4. Hartwig J. F. J. Am. Chem. Soc. 2016;138:2. - PMC - PubMed
    5. Hartwig J. F., Larsen M. A. ACS Cent. Sci. 2016;2:281. - PMC - PubMed
    6. Goldberg K. I., Goldman A. S. Acc. Chem. Res. 2017;50:620. - PubMed
    1. Blanksby S. J., Ellison G. B. Acc. Chem. Res. 2003;36:255. - PubMed
    1. Dermenci A., Coe J. W., Dong G. Org. Chem. Front. 2014;1:567. - PMC - PubMed
    2. Jun C.-H. Chem. Soc. Rev. 2004;33:610. - PubMed
    1. Meunier B., de Visser S. P., Shaik S. Chem. Rev. 2004;104:3947. - PubMed
    2. Groves J. T., in Cytochrome P450: Structure, Mechanism, and Biochemistry, ed. P. R. Ortiz de Montellano, Springer US, Boston, MA, 2005, pp. 1–43.
    3. Ortiz de Montellano P. R. Chem. Rev. 2010;110:932. - PMC - PubMed
    4. Bordeaux M., Galarneau A., Drone J. Angew. Chem., Int. Ed. 2012;51:10712. - PubMed
    1. Company A., Lloret J., Gómez L. and Costas M., Alkane C–H Activation by Single-Site Metal Catalysis, ed. P. J. Pérez, Springer Netherlands, Dordrecht, 2012, pp. 143–228.
    2. Grau M. and Britovsek G. J. P., in Iron Catalysis II, ed. E. Bauer, Springer International Publishing, Cham, 2015, pp. 145–171.
    3. Liu W., Groves J. T. Acc. Chem. Res. 2015;48:1727. - PubMed

LinkOut - more resources