Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 17;9(3):754-759.
doi: 10.1039/c7sc04723a. eCollection 2018 Jan 21.

Dual vicinal functionalisation of heterocycles via an interrupted Pummerer coupling/[3,3]-sigmatropic rearrangement cascade

Affiliations

Dual vicinal functionalisation of heterocycles via an interrupted Pummerer coupling/[3,3]-sigmatropic rearrangement cascade

Mindaugas Šiaučiulis et al. Chem Sci. .

Abstract

A dual vicinal functionalisation cascade involving the union of heterocycles and allyl sulfoxides is described. In particular, the approach provides efficient one-step access to biologically relevant and synthetically important C3 thio, C2 carbo substituted indoles. The reaction operates under mild, metal free conditions and without directing groups, via an interrupted Pummerer coupling of activated allyl sulfoxides, generating allyl heteroaryl sulfonium salts that are predisposed to a charge accelerated [3,3]-sigmatropic rearrangement.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Vicinal S/C substituted heterocycles: important molecular architectures (A); stepwise C–H functionalisation strategy illustrated for indole (B); and, our approach utilising a dual vicinal functionalisation cascade, again, illustrated using indole.
Scheme 2
Scheme 2. Exploring the scope of indoles in the dual vicinal functionalisation cascade. a 1.5 equivalents of sulfoxide and 1.6 equivalents of TFAA were used.
Scheme 3
Scheme 3. Exploring the scope of the allylic sulfoxide in the dual functionalisation cascade of indoles. a The corresponding E-allylic sulfoxides were used (i.e. R6 = H). b3y/4y = 4.8 : 1. c Yield determined by 1H-NMR. d3aa/4aa = 3 : 1. e Heated at 60 °C, 30 min. f3ac/4ac = 3.3 : 1. g Heated at 60 °C, 1 h. Regioisomer ratios determined from 1H-NMR spectra of the crude reaction mixture.
Scheme 4
Scheme 4. Preliminary results exploring other heterocycles in the dual vicinal functionalisation cascade. a using Na2CO3 instead of K3PO4. b 2 equivalents of sulfoxide and 2.2 equivalents of Tf2O were used. c Yield determined by 1H-NMR. d6k/C3 thio, C2 allyl pyrrole = 1 : 1.6. e6l/C3 thio, C2 allyl pyrrole = 1.5 : 1. f –78 °C to rt, overnight.
Scheme 5
Scheme 5. Proposed mechanism of the dual functionalisation cascade of indoles (A) and probing the effect of N-substitution for the selective generation of C3 thio, C2 allyl indole 3 or C2 thio, C3 allyl indole 4 (B). a Conditions as in Scheme 3. b Combined yield of 3 + 4. c Regioisomer ratios determined by 1H-NMR of the crude reaction mixture.
Scheme 6
Scheme 6. Scalability of the dual functionalisation cascade of indoles and iterative dual functionalisation cascades for the generation of novel bis indolyl sulfides. a Conditions as in Scheme 2.

Similar articles

Cited by

References

    1. Sharma V., Kumar P., Pathak D. J. Heterocycl. Chem. 2010;47:491–502.
    2. Ali N. A., Dar B. A., Pradhan V., Forooqui M. Mini-Rev. Med. Chem. 2013;13:1792–1800. - PubMed
    1. Jun J.-I., Lau L. F. Nat. Cell Biol. 2010;12:676–685. - PMC - PubMed
    2. Liu J.-Y., Yang J., Inceoglu B., Qiu H., Ulu A., Hwang S.-H., Chiamvimonvat N., Hammock B. D. Biochem. Pharmacol. 2010;79:880–887. - PMC - PubMed
    1. Jawien J., Gajda M., Rudling M., Mateuszuk L., Olszanecki R., Guzik T. J., Cichocki T., Chlopicki S., Korbut R. Eur. J. Clin. Invest. 2006;36:141–146. - PubMed
    1. Williams T. M. J. Med. Chem. 1993;36:1291–1294. - PubMed
    2. Silvestri R. J. Med. Chem. 2003;46:2482–2493. - PubMed
    3. Ragno R., Artico M., Martino G. D., Regina G. L., Coluccia A., Pasquali A. D., Silvestri R. J. Med. Chem. 2005;48:213–223. - PubMed
    4. Ragno R. J. Med. Chem. 2006;49:3172–3184. - PubMed
    5. Zhao Z. Bioorg. Med. Chem. Lett. 2008;18:554–559. - PubMed
    6. Famiglini V. J. Med. Chem. 2014;57:9945–9957. - PubMed
    1. De Martino G. J. Med. Chem. 2006;49:947–954. - PubMed
    2. La Regina G. J. Med. Chem. 2011;54:8394–8406. - PMC - PubMed
    3. La Regina G. J. Med. Chem. 2013;56:123–149. - PMC - PubMed
    4. Guan Q. Eur. J. Med. Chem. 2014;87:306–315. - PubMed
    5. Fortes M. P., da Silva P. B. N., da Silva T. G., Kaufman T. S., Militão G. C. G., Silveira C. C. Eur. J. Med. Chem. 2016;118:21–26. - PubMed