Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 27;9(4):904-909.
doi: 10.1039/c7sc04351a. eCollection 2018 Jan 28.

Ni-catalysed regioselective 1,2-diarylation of unactivated olefins by stabilizing Heck intermediates as pyridylsilyl-coordinated transient metallacycles

Affiliations

Ni-catalysed regioselective 1,2-diarylation of unactivated olefins by stabilizing Heck intermediates as pyridylsilyl-coordinated transient metallacycles

Surendra Thapa et al. Chem Sci. .

Abstract

We report a Ni-catalysed diarylation of unactivated olefins in dimethylpyridylvinylsilane by intercepting Heck C(sp3)-NiX intermediates, derived from aryl halides, with arylzinc reagents. This approach utilizes a modifiable pyridylsilyl moiety as a coordinating group that plays a dual role of intercepting oxidative addition species to promote Heck carbometallation, and stabilizing the Heck C(sp3)-NiX intermediates as transient metallacycles to suppress β-hydride elimination, and facilitate transmetalation/reductive elimination. This method affords 1,2-diarylethylsilanes, which can be readily oxidized to 1,2-diarylethanols that occur as structural motifs in 3-aryl-3,4-dihydroisocoumarin and dihydrostilbenoid natural products.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Two well-known transformations working as side reactions during regioselective olefin diarylation.
Scheme 2
Scheme 2. Strategy for olefin dicarbofunctionalization.
Scheme 3
Scheme 3. Transformation of silyl group to alcohol.
Scheme 4
Scheme 4. Establishing the role of pyridylsilyl group.
Scheme 5
Scheme 5. Radical clock experiment.
Scheme 6
Scheme 6. Proposed catalytic cycle.

References

    1. For dicarbofunctionalization of activated olefins by conjugate addition/enolate interception, see:

    2. Guo H.-C., Ma J.-A. Angew. Chem., Int. Ed. 2006;45:354. - PubMed
    3. Qin T., Cornella J., Li C., Malins L. R., Edwards J. T., Kawamura S., Maxwell B. D., Eastgate M. D., Baran P. S. Science. 2016;352:801. - PMC - PubMed
    1. Liao L., Jana R., Urkalan K. B., Sigman M. S. J. Am. Chem. Soc. 2011;133:5784. - PMC - PubMed
    2. Wu X., Lin H.-C., Li M.-L., Li L.-L., Han Z.-Y., Gong L.-Z. J. Am. Chem. Soc. 2015;137:13476. - PubMed
    3. Kuang Z., Yang K., Song Q. Org. Lett. 2017;19:2702. - PubMed
    4. Terao J., Nii S., Chowdhury F. A., Nakamura A., Kambe N. Adv. Synth. Catal. 2004;346:905.
    5. Mizutani K., Shinokubo H., Oshima K. Org. Lett. 2003;5:3959. - PubMed
    1. García-Domínguez A., Li Z., Nevado C. J. Am. Chem. Soc. 2017;139:6835. - PubMed
    2. Gu J.-W., Min Q.-Q., Yu L.-C., Zhang X. Angew. Chem., Int. Ed. 2016;55:12270. - PubMed
    3. Stokes B. J., Liao L., de Andrade A. M., Wang Q., Sigman M. S. Org. Lett. 2014;16:4666. - PMC - PubMed
    1. For examples of two-component dicarbofunctionalizations of tethered olefins, see:

    2. Dhungana R. K., Shrestha B., Thapa-Magar R., Basnet P., Giri R. Org. Lett. 2017;19:2154. - PubMed
    3. Balme G., Bouyssi D., Lomberget T., Monteiro N. Synthesis. 2003;2003:2115.
    4. Fournet G., Balme G., Gore J. Tetrahedron Lett. 1987;28:4533.
    5. Kim J. G., Son Y. H., Seo J. W., Kang E. J. Eur. J. Org. Chem. 2015;2015:1781.
    6. Phapale V. B., Buñuel E., García-Iglesias M., Cárdenas D. J. Angew. Chem., Int. Ed. 2007;46:8790. - PubMed
    7. Nakamura M., Ito S., Matsuo K., Nakamura E. Synlett. 2005;2005:1794.
    8. Wakabayashi K., Yorimitsu H., Oshima K. J. Am. Chem. Soc. 2001;123:5374. - PubMed
    9. Yan C.-S., Peng Y., Xu X.-B., Wang Y.-W. Chem.–Eur. J. 2012;18:6039. - PubMed
    10. Seashore-Ludlow B., Somfai P. Org. Lett. 2012;14:3858. - PubMed
    11. Grigg R., Sansano J., Santhakumar V., Sridharan V., Thangavelanthum R., Thornton-Pett M., Wilson D. Tetrahedron. 1997;53:11803.
    12. Thapa S., Basnet P., Giri R. J. Am. Chem. Soc. 2017;139:5700. - PubMed
    13. You W., Brown M. K. J. Am. Chem. Soc. 2015;137:14578. - PubMed
    14. You W., Brown M. K. J. Am. Chem. Soc. 2014;136:14730. - PubMed
    15. Cong H., Fu G. C. J. Am. Chem. Soc. 2014;136:3788. - PMC - PubMed
    16. McMahon C. M., Renn M. S., Alexanian E. J. Org. Lett. 2016;18:4148. - PMC - PubMed
    17. Vaupel A., Knochel P. J. Org. Chem. 1996;61:5743. - PubMed
    18. Ishiyama T., Murata M., Suzuki A., Miyaura N. J. Chem. Soc., Chem. Commun. 1995:295.
    19. Walker J. A., Vickerman K. L., Humke J. N., Stanley L. M. J. Am. Chem. Soc. 2017;139:10228. - PubMed
    1. Saini V., Sigman M. S. J. Am. Chem. Soc. 2012;134:11372. - PMC - PubMed
    2. Werner E. W., Urkalan K. B., Sigman M. S. Org. Lett. 2010;12:2848. - PMC - PubMed
    3. Saini V., Liao L., Wang Q., Jana R., Sigman M. S. Org. Lett. 2013;15:5008. - PMC - PubMed
    4. Urkalan K. B., Sigman M. S. Angew. Chem., Int. Ed. 2009;48:3146. - PMC - PubMed

LinkOut - more resources