Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;41(4):1266-1275.
doi: 10.1007/s10753-018-0774-y.

Cold Stimuli Facilitate Inflammatory Responses Through Transient Receptor Potential Melastatin 8 (TRPM8) in Primary Airway Epithelial Cells of Asthmatic Mice

Affiliations

Cold Stimuli Facilitate Inflammatory Responses Through Transient Receptor Potential Melastatin 8 (TRPM8) in Primary Airway Epithelial Cells of Asthmatic Mice

Haipei Liu et al. Inflammation. 2018 Aug.

Abstract

Bronchial asthma is a chronic inflammatory airway disease that can be aggravated by cold air. However, its mechanism remains largely unknown. As a thermo-sensing cation channel, transient receptor potential melastatin 8 (TRPM8) can be activated by cold stimuli (8-22 °C) and cooling agents. Whereas TRPM8 activation leads to enhanced expression of inflammatory cytokines and mucus hypersecretion in human bronchial epithelial cell lines, no previous study has examined its role in regulating the cold-induced inflammatory responses and its mechanism in asthmatic airway epithelium. Airway epithelial cells were isolated from asthma model mice and exposed to low temperature (18 °C). The TRPM8 overexpression plasmid and siRNA lentivirus were transfected to up- or downregulate the TRPM8 level. The expression of mRNAs of inflammatory cytokines was tested using real-time reverse transcription-polymerase chain reaction (RT-PCR). The activities of phosphorylated protein kinase C (PKC) and phosphorylated inhibitor of nuclear factor kappa B (IκB) were measured using the immunofluorescence assay. The expression of mRNAs of inflammatory cytokines [interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10, IL-13, granulocyte macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor (TNF)-α] increased significantly under cold conditions, which was boosted after TRPM8 overexpression and augmented further in the presence of PKC inhibitor, calphostin C. However, the downregulation of TRPM8 and nuclear factor kappa B (NF-κB) impaired the transcription of these cytokine genes. In addition, the phosphorylated PKC and phosphorylated IκB were activated by cold stimuli. Moreover, the expression of phosphorylated IκB protein improved in the presence of TRPM8, while disruption with the TRPM8 gene or TRPM8 antagonist prohibited the activation of IκB. Cold air could induce inflammatory responses through the TRPM8-mediated PKC/NF-κB signal pathway in primary airway epithelial cells of asthmatic mice.

Keywords: airway inflammation; asthma; cold stimulus; nuclear factor-κB; protein kinase C; transient receptor potential melastatin 8.

PubMed Disclaimer

References

    1. Exp Mol Med. 2017 Mar 3;49(3):e299 - PubMed
    1. Cell Calcium. 2010 Oct;48(4):202-8 - PubMed
    1. Evid Based Complement Alternat Med. 2008 Mar;5(1):61-9 - PubMed
    1. Mol Endocrinol. 2010 Oct;24(10):2030-7 - PubMed
    1. Biochim Biophys Acta. 2011 Nov;1810(11):1110-3 - PubMed

LinkOut - more resources