Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Feb 5;263(4):1886-92.

Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH

Affiliations
  • PMID: 2962998
Free article

Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH

J E Bishop et al. J Biol Chem. .
Free article

Abstract

Steady state turnover of Ca2+-ATPase of sarcoplasmic reticulum has generally been reported to have a bell-shaped pH profile, with an optimum near pH 7.0. While a free [Mg2+] of 2 mM is optimal for activity at pH 7.0, it was found that this level was markedly inhibitory (K1/2 = 2 mM) at pH 8.0, thus accounting for the generally observed low activity at high pH. High activity was restored at pH 8.0 using an optimum free [Mg2+] of 0.2 mM. The mechanism of the Mg2+-dependent inhibition at pH 8.0 was probed. Inhibition was not due to Mg2+ competition with Ca2+ for cytoplasmic transport sites nor to inhibition of formation of steady state phosphoenzyme from ATP. Mg2+ inhibited (K1/2 = 1.8 mM) decay of steady state phosphoenzyme; thus, the locus of inhibition was one of the phosphoenzyme interconversion steps. Transient kinetic experiments showed that Mg2+ competitively inhibited (Ki = 0.7 mM) binding of Ca2+ to lumenal transport sites, blocking the ability of Ca2+ to reverse the catalytic cycle to form ADP-sensitive, from ADP-insensitive, phosphoenzyme. The data were consistent with a hypothesis in which Mg2+ binds lumenal Ca2+ transport sites with progressively higher affinity at higher pH to form a dead-end complex; its dissociation would then be rate-limiting during steady state turnover.

PubMed Disclaimer

Publication types

LinkOut - more resources