Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2018 Apr;50(4):559-571.
doi: 10.1038/s41588-018-0084-1. Epub 2018 Apr 9.

Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes

Anubha Mahajan  1 Jennifer Wessel  2 Sara M Willems  3 Wei Zhao  4 Neil R Robertson  5   6 Audrey Y Chu  7   8 Wei Gan  5 Hidetoshi Kitajima  5 Daniel Taliun  9 N William Rayner  5   6   10 Xiuqing Guo  11 Yingchang Lu  12 Man Li  13   14 Richard A Jensen  15 Yao Hu  16 Shaofeng Huo  16 Kurt K Lohman  17 Weihua Zhang  18   19 James P Cook  20 Bram Peter Prins  10 Jason Flannick  21   22 Niels Grarup  23 Vassily Vladimirovich Trubetskoy  9 Jasmina Kravic  24 Young Jin Kim  25 Denis V Rybin  26 Hanieh Yaghootkar  27 Martina Müller-Nurasyid  28   29   30 Karina Meidtner  31   32 Ruifang Li-Gao  33 Tibor V Varga  34 Jonathan Marten  35 Jin Li  36 Albert Vernon Smith  37   38 Ping An  39 Symen Ligthart  40 Stefan Gustafsson  41 Giovanni Malerba  42 Ayse Demirkan  40   43 Juan Fernandez Tajes  5 Valgerdur Steinthorsdottir  44 Matthias Wuttke  45 Cécile Lecoeur  46 Michael Preuss  12 Lawrence F Bielak  47 Marielisa Graff  48 Heather M Highland  49 Anne E Justice  48 Dajiang J Liu  50 Eirini Marouli  51 Gina Marie Peloso  21   26 Helen R Warren  51   52 ExomeBP ConsortiumMAGIC ConsortiumGIANT ConsortiumSaima Afaq  18 Shoaib Afzal  53   54   55 Emma Ahlqvist  24 Peter Almgren  56 Najaf Amin  40 Lia B Bang  57 Alain G Bertoni  58 Cristina Bombieri  42 Jette Bork-Jensen  23 Ivan Brandslund  59   60 Jennifer A Brody  15 Noël P Burtt  21 Mickaël Canouil  46 Yii-Der Ida Chen  11 Yoon Shin Cho  61 Cramer Christensen  62 Sophie V Eastwood  63 Kai-Uwe Eckardt  64 Krista Fischer  65 Giovanni Gambaro  66 Vilmantas Giedraitis  67 Megan L Grove  68 Hugoline G de Haan  33 Sophie Hackinger  10 Yang Hai  11 Sohee Han  25 Anne Tybjærg-Hansen  54   55   69 Marie-France Hivert  70   71   72 Bo Isomaa  73   74 Susanne Jäger  31   32 Marit E Jørgensen  75   76 Torben Jørgensen  55   77   78 Annemari Käräjämäki  79   80 Bong-Jo Kim  25 Sung Soo Kim  25 Heikki A Koistinen  81   82   83   84 Peter Kovacs  85 Jennifer Kriebel  32   86 Florian Kronenberg  87 Kristi Läll  65   88 Leslie A Lange  89 Jung-Jin Lee  4 Benjamin Lehne  18 Huaixing Li  16 Keng-Hung Lin  90 Allan Linneberg  77   91   92 Ching-Ti Liu  26 Jun Liu  40 Marie Loh  18   93   94 Reedik Mägi  65 Vasiliki Mamakou  95 Roberta McKean-Cowdin  96 Girish Nadkarni  97 Matt Neville  6   98 Sune F Nielsen  53   54   55 Ioanna Ntalla  51 Patricia A Peyser  47 Wolfgang Rathmann  32   99 Kenneth Rice  100 Stephen S Rich  101 Line Rode  53   54 Olov Rolandsson  102 Sebastian Schönherr  87 Elizabeth Selvin  13 Kerrin S Small  103 Alena Stančáková  104 Praveen Surendran  105 Kent D Taylor  11 Tanya M Teslovich  9 Barbara Thorand  32   106 Gudmar Thorleifsson  44 Adrienne Tin  107 Anke Tönjes  108 Anette Varbo  53   54   55   69 Daniel R Witte  109   110 Andrew R Wood  27 Pranav Yajnik  9 Jie Yao  11 Loïc Yengo  46 Robin Young  105   111 Philippe Amouyel  112 Heiner Boeing  113 Eric Boerwinkle  68   114 Erwin P Bottinger  12 Rajiv Chowdhury  115 Francis S Collins  116 George Dedoussis  117 Abbas Dehghan  40   118 Panos Deloukas  51   119 Marco M Ferrario  120 Jean Ferrières  121   122 Jose C Florez  70   123   124   125 Philippe Frossard  126 Vilmundur Gudnason  37   38 Tamara B Harris  127 Susan R Heckbert  15 Joanna M M Howson  115 Martin Ingelsson  67 Sekar Kathiresan  21   123   125   128 Frank Kee  129 Johanna Kuusisto  104 Claudia Langenberg  3 Lenore J Launer  127 Cecilia M Lindgren  5   21   130 Satu Männistö  131 Thomas Meitinger  132   133 Olle Melander  56 Karen L Mohlke  134 Marie Moitry  135   136 Andrew D Morris  137   138 Alison D Murray  139 Renée de Mutsert  33 Marju Orho-Melander  140 Katharine R Owen  6   98 Markus Perola  131   141 Annette Peters  30   32   106 Michael A Province  39 Asif Rasheed  126 Paul M Ridker  8   125 Fernando Rivadineira  40   142 Frits R Rosendaal  33 Anders H Rosengren  24 Veikko Salomaa  131 Wayne H-H Sheu  143   144   145 Rob Sladek  146   147   148 Blair H Smith  149 Konstantin Strauch  28   150 André G Uitterlinden  41   142 Rohit Varma  151 Cristen J Willer  152   153   154 Matthias Blüher  85   108 Adam S Butterworth  105   155 John Campbell Chambers  18   19   156 Daniel I Chasman  8   125 John Danesh  105   155   157   158 Cornelia van Duijn  40 Josée Dupuis  7   26 Oscar H Franco  40 Paul W Franks  34   102   159 Philippe Froguel  46   160 Harald Grallert  32   86   161   162 Leif Groop  24   141 Bok-Ghee Han  25 Torben Hansen  23   163 Andrew T Hattersley  164 Caroline Hayward  35 Erik Ingelsson  36   41 Sharon L R Kardia  47 Fredrik Karpe  6   98 Jaspal Singh Kooner  19   156   165 Anna Köttgen  45 Kari Kuulasmaa  132 Markku Laakso  104 Xu Lin  16 Lars Lind  166 Yongmei Liu  58 Ruth J F Loos  12   167 Jonathan Marchini  5   168 Andres Metspalu  65 Dennis Mook-Kanamori  33   169 Børge G Nordestgaard  53   54   55 Colin N A Palmer  170 James S Pankow  171 Oluf Pedersen  23 Bruce M Psaty  15   172 Rainer Rauramaa  173 Naveed Sattar  174 Matthias B Schulze  31   32 Nicole Soranzo  10   155   175 Timothy D Spector  103 Kari Stefansson  38   44 Michael Stumvoll  176 Unnur Thorsteinsdottir  38   44 Tiinamaija Tuomi  74   82   141   177 Jaakko Tuomilehto  81   178   179   180 Nicholas J Wareham  3 James G Wilson  181 Eleftheria Zeggini  10 Robert A Scott  3 Inês Barroso  10   182 Timothy M Frayling  27 Mark O Goodarzi  183 James B Meigs  184 Michael Boehnke  9 Danish Saleheen  4   126 Andrew P Morris  5   20   65 Jerome I Rotter  185   186 Mark I McCarthy  187   188   189
Affiliations
Meta-Analysis

Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes

Anubha Mahajan et al. Nat Genet. 2018 Apr.

Abstract

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Posterior probabilities for coding variants across loci with annotation-informed priors
Fine-mapping of 37 distinct association signals was performed using European ancestry GWAS meta-analysis including 50,160 T2D cases and 465,272 controls. For each signal, we constructed a credible set of variants accounting for 99% of the posterior probability of driving the association, incorporating an “annotation informed” prior model of causality which “boosts” the posterior probability of driving the association signal that is attributed to coding variants. Each bar represents a signal with the total probability attributed to the coding variants within the 99% credible set plotted on the y-axis. When the probability (bar) is split across multiple coding variants (at least 0.05 probability attributed to a variant) at a particular locus, these are indicated by blue, pink, yellow, and green colours. The combined probability of the remaining coding variants is highlighted in grey. RREB1(a): RREB1 p. Asp1171Asn; RREB1(b): RREB1 p.Ser1499Tyr; HNF1A(a): HNF1A p.Ala146Val; HNF1A(b): HNF1A p.Ile75Leu; PPIP5K2† : PPIP5K2 p.Ser1207Gly; MTMR3†: MTMR3 p.Asn960Ser; IL17REL†: IL17REL p.Gly70Arg; NBEAL2†: NBEAL2 p.Arg511Gly, KIF9†: KIF9 p.Arg638Trp.
Figure 2
Figure 2. Plot of measures of variant-specific and gene-specific features of distinct coding signals to access the functional impact of coding alleles
Each point represents a coding variant with the minor allele frequency plotted on the x-axis and the Combined Annotation Dependent Depletion score (CADD-score) plotted on the y-axis. Size of each point varies with the measure of intolerance of the gene to loss of function variants (pLI) and the colour represents the fine-mapping group each variant is assigned to. Group 1: signal is driven by coding variant. Group 2: signal attributable to non-coding variants. Group 3: consistent with partial role for coding variants. Group 4: Unclassified category; includes PAX4, ZHX3, and signal at TCF19 within the MHC region where we did not perform fine-mapping. Inset: plot shows the distribution of CADD-score between different groups. The plot is a combination of violin plots and box plots; width of each violin indicates frequency at the corresponding CADD-score and box plots show the median and the 25% and 75% quantiles. P value indicates significance from two-sample Kolmogorov-Smirnov test.

References

    1. Kooner JS, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43:984–9. - PMC - PubMed
    1. Cho YS, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;44:67–72. - PMC - PubMed
    1. Morris AP, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90. - PMC - PubMed
    1. Mahajan A, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44. - PMC - PubMed
    1. Ng MC, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10:e1004517. - PMC - PubMed

Publication types

MeSH terms

Grants and funding