Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 26:9:386.
doi: 10.3389/fpls.2018.00386. eCollection 2018.

AFLP Approach Reveals Variability in Phragmites australis: Implications for Its Die-Back and Evidence for Genotoxic Effects

Affiliations

AFLP Approach Reveals Variability in Phragmites australis: Implications for Its Die-Back and Evidence for Genotoxic Effects

Andrea Coppi et al. Front Plant Sci. .

Abstract

Phragmites australis is a subcosmopolitan species typical of wetlands being studied in Europe for its disappearance from natural stands, a phenomenon called reed die-back syndrome (RDBS). Although it is conjectured that low genetic variability contributes to RDBS, this aspect remains neglected to this day. Using a molecular fingerprinting approach and a sequence analysis of the trnT-trnL/rbcL-psaI regions of cpDNA, this study aimed to compare the genetic structure of stable vs. RDBS-affected P. australis stands from five wetlands of central Italy. Beforehand, in order to characterize the health condition of reed populations, the occurrence of the main macromorphological descriptors for RDBS was considered on 40 reed stands. Soil samples were also collected to examine the total content of heavy metals. The current study analyzed cpDNA in 19 samples and AFLP profiles in 381 samples to investigate the genetic structure of Phragmites populations. Based on the multinomial-Dirichlet model, an analysis of candidate loci under selective pressure was also performed. The relationships among AFLP data, RDBS descriptors and chemicals were evaluated with the use of Linear Mixed Models. The analysis of the cpDNA shows the occurrence of the haplotypes M (the most widespread), and K here recorded for the first time in Italy. Three new haplotypes were also described. The DNA fingerprinting analysis has produced a total of 322 loci (98% polymorphic) and shows the medium-to-high amount of genetic diversity. The significant genetic differentiation among wetlands (Fst = 0.337) suggests either low gene flow or small effective population size. Moreover, the low amount of outlier loci (only 5; l.5% of the total), seems to indicate the scarce occurrence of selective pressure upon the reed's genome. Genetic diversity increased in relationship to the decrease in diameter and of flowering buds of the reed, two of the trends associated with the die-back. The current study rejects the hypothesis that genetic diversity massively contributed to RDBS. Moreover, significant relationships between genetic diversity and the total concentration of some heavy metals (Cr, Cu, and Zn) were highlighted, indicating possible genotoxic effects on P. australis. The current study represents a fact-finding background useful for the conservation of common reed.

Keywords: Central Italy; DNA fingerprinting; common reed; heavy metals; outlier loci; wetlands.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Locations of the study area. The five sampling sites (white dot) were located in three Italian Regions: Tuscany for Fucecchio Marsh (‘Fu’) and Chiusi Lake (‘Ch’); Umbria for Colfiorito Marsh (‘Co’) and Trasimeno Lake (‘Tr’); Latium for Vico Lake (‘Vi’).
FIGURE 2
FIGURE 2
Haplotype networks analysis based on cpDNA markers (trnT-trnL/rbcL-psaI). Letters denote haplotypes as reported in Supplementary Table S1; gray lines represent alternative connection separating the different haplotypes. Numbers depict the samples analyzed in this study as reported in Supplementary Table S2.
FIGURE 3
FIGURE 3
BayeScan plots of 322 (AFLP) loci in 381 samples of P. australis. The line is the threshold [Log (PO) = 0.5] used for identifying outlier loci. Dots that fall over to the threshold line are identified as outlier loci and the dimension in base pairs (bp) was reported.
FIGURE 4
FIGURE 4
Boxplot diagrams used to illustrate the differences across sites in the levels of average gene diversity over loci (AGD). Significant differences (P-value < 0.05) between sites are highlighted by different letters in brackets. The diagrams (A,B) represent the differences of genetic diversity across sites for all and outlier loci, respectively.
FIGURE 5
FIGURE 5
Neighbor-Joining dendrograms based on Slatkin’s linearized Fst matrix. The codes of sampling sites were reported as in Table 1. Scale bar indicates Slatkin’s linearized Fst value of genetic distance. (A) The genetic distance among the five population surveyed. The dendrograms from (B–F) indicate the genetic distance among the sampling sites within a population. Black dots indicate the flooded status of the sampling sites.
FIGURE 6
FIGURE 6
Diagrams illustrating the relationships between the genetic diversity indices and sediment metals (6 A–C) and macromorphological traits (6 D,E). For Zn, the interaction with the ecological status (D = emerged; F = flooded stands) is shown. In each figure the ANOVA p-value and the partial R squared of the presented mixed models are shown. Variable marked with (E) was log-transformed in order to obtain the normality of residuals.

References

    1. Acta Plantarum (2016). Scheda IPFI, Acta Plantarum. Available at: http://www.actaplantarum.org/flora/flora_info.php?id=5837 [accessed October 04 2016].
    1. Armstrong J., Armstrong W., Van der Putten W. H. (1996). Phragmites die-back: bud and root death blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytol. 133 399–414. 10.1111/j.1469-8137.1996.tb01907.x - DOI - PubMed
    1. Arrigoni P. V. (2015). Flora dell’isola di Sardegna, Vol. 6 Sassari: Carlo Delfino Editore.
    1. Beaumont M. A., Balding D. J. (2004). Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol. 13 969–980. 10.1111/j.1365-294X.2004.02125.x - DOI - PubMed
    1. Beaumont M. A., Nichols R. A. (1996). Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B Biol. Sci. 263 1619–1626. 10.1098/rspb.1996.0237 - DOI

LinkOut - more resources