Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018;13(5):369-377.
doi: 10.2174/1574888X13666180410160511.

Stem Cell Interventions for Bone Healing: Fractures and Osteoporosis

Affiliations
Review

Stem Cell Interventions for Bone Healing: Fractures and Osteoporosis

Anita Sanghani-Kerai et al. Curr Stem Cell Res Ther. 2018.

Abstract

With the ageing population, musculoskeletal conditions are becoming more inherent. Delayed union is defined as a slower than normal fracture healing response, with no healing after 4 to 6 months; however, the union is anticipated given sufficient time. In the context of delayed/non-union, fragility fractures in osteoporotic populations carry significant patient morbidity and socioeconomic costs. Multiple mechanisms hinder fracture healing in osteoporotic patients, imbalanced bone remodelling leads to impaired bone microarchitecture due to reduced osteoblast number and activity and as such, callus formation is diminished. Since stem cells can self-renew and differentiate into various tissue lineages, they are becoming very popular in tissue regeneration in musculoskeletal conditions. In this review, we discuss the role of stem cells in physiological fracture healing and their potential therapeutic use following a fracture. We explore the potential of stem cells, the release of chemokines and cytokines to reduce fracture risk in osteoporosis.

Keywords: Stem cells; bone; fracture; healing; osteoporosis; regeneration..

PubMed Disclaimer