Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene
- PMID: 29641602
- PMCID: PMC5919673
- DOI: 10.1371/journal.pgen.1007310
Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene
Abstract
Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures







References
-
- van Megen H, van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, et al. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology. 2009;11:927–50.
-
- Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol. 2013;14(9):946–61. doi: 10.1111/mpp.12057 - DOI - PMC - PubMed
-
- Holterman M, Karegar A, Mooijman P, van Megen H, van den Elsen S, Vervoort MT, et al. Disparate gain and loss of parasitic abilities among nematode lineages. PLoS ONE. 2017;12(9):e0185445 doi: 10.1371/journal.pone.0185445 - DOI - PMC - PubMed
-
- Holterman M, Karssen G, van den Elsen S, van Megen H, Bakker J, Helder J. Small Subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology. 2009;99(3):227–35. doi: 10.1094/PHYTO-99-3-0227 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources