Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 3;9(9):2196-2201.
doi: 10.1021/acs.jpclett.8b00406. Epub 2018 Apr 16.

Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells

Affiliations

Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells

Yun-Hyok Kye et al. J Phys Chem Lett. .

Abstract

The chemical stability of methylammonium lead iodide (MAPbI3) under humid conditions remains the primary challenge facing halide perovskite solar cells. We investigate defect processes in the water-intercalated iodide perovskite (MAPbI3_H2O) and monohydrated phase (MAPbI3·H2O) within a first-principles thermodynamic framework. We consider the formation energies of isolated and aggregated vacancy defects with different charge states under I-rich and I-poor conditions. It is found that a PbI2 (partial Schottky) vacancy complex can be formed readily, while the MAI vacancy complex is difficult to form in the hydrous compounds. Vacancies in the hydrous phases create deep charge transition levels, indicating the degradation of the lead halide perovskite upon exposure to moisture. Electronic structure analysis supports a mechanism of water-mediated vacancy pair formation.

PubMed Disclaimer