Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 11;18(1):53.
doi: 10.1186/s12862-018-1167-4.

Parapatric genetic divergence among deep evolutionary lineages in the Mediterranean green crab, Carcinus aestuarii (Brachyura, Portunoidea, Carcinidae), accounts for a sharp phylogeographic break in the Eastern Mediterranean

Affiliations

Parapatric genetic divergence among deep evolutionary lineages in the Mediterranean green crab, Carcinus aestuarii (Brachyura, Portunoidea, Carcinidae), accounts for a sharp phylogeographic break in the Eastern Mediterranean

Temim Deli et al. BMC Evol Biol. .

Abstract

Background: Recently, population genetic studies of Mediterranean marine species highlighted patterns of genetic divergence and phylogeographic breaks, due to the interplay between impacts of Pleistocene climate shifts and contemporary hydrographical barriers. These factors markedly shaped the distribution of marine organisms and their genetic makeup. The present study is part of an ongoing effort to understand the phylogeography and evolutionary history of the highly dispersive Mediterranean green crab, Carcinus aestuarii (Nardo, 1847), across the Mediterranean Sea. Recently, marked divergence between two highly separated haplogroups (genetic types I and II) of C. aestuarii was discerned across the Siculo-Tunisian Strait, suggesting an Early Pleistocene vicariant event. In order to better identify phylogeographic patterns in this species, a total of 263 individuals from 22 Mediterranean locations were analysed by comparing a 587 basepair region of the mitochondrial gene Cox1 (cytochrome oxidase subunit 1). The examined dataset is composed of both newly generated sequences (76) and previously investigated ones (187).

Results: Our results unveiled the occurrence of a highly divergent haplogroup (genetic type III) in the most north-eastern part of the Mediterranean Sea. Divergence between the most distinct type III and the common ancestor of both types I and II corresponds to the Early Pleistocene and coincides with the historical episode of separation between types I and II. Our results also revealed strong genetic divergence among adjacent regions (separating the Aegean and Marmara seas from the remaining distribution zone) and confirmed a sharp phylogeographic break across the Eastern Mediterranean. The recorded parapatric genetic divergence, with the potential existence of a contact zone between both groups in the Ionian Sea and notable differences in the demographic history, suggest the likely impact of paleoclimatic events, as well as past and contemporary oceanographic processes, in shaping genetic variability of this species.

Conclusions: Our findings not only provide further evidence for the complex evolutionary history of the green crab in the Mediterranean Sea, but also stress the importance of investigating peripheral areas in the species' distribution zone in order to fully understand the distribution of genetic diversity and unravel hidden genetic units and local patterns of endemism.

Keywords: Biogeographic boundaries; Crustacea; Evolutionary history; Mediterranean Sea; Mitochondrial DNA; Population genetics.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

None of the sampled populations of Carcinus aestuarii is endangered or protected by any international or national legal framework. In addition, no specific permissions were required for sampling activities.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Sampling locations of the green crab Carcinus aestuarii across the Mediterranean Sea. Distribution patterns and proportions of Cox1 types (I, II, and III) along the examined locations are shown in couloured circles. S-T S: Siculo-Tunisian Strait; PHB: Peloponnese Hydrographic Break (represented by the quasi-circular anti-cyclonic feature southwest of Peloponnese). The base map was constructed with the software DIVA-GIS 7.5.0 (http://www.diva-gis.org)
Fig. 2
Fig. 2
TCS haplotype network of Carcinus aestuarii, based on the alignment of 587 bp of the mitochondrial gene Cox1, showing the relationships among the recorded haplotypes. Haplotype 2 corresponds to the ancestral haplotype. Small black circles correspond to missing (or hypothetical) haplotypes. Each line between two points represents one mutational step. Circle sizes depict proportions of haplotypes; the smallest corresponds to 1 and the largest to 67 individuals
Fig. 3
Fig. 3
Distribution patterns of types I, II and III of Carcinus aestuarii Cox1 gene across western and eastern Mediterranean basins (a) as well as geographic regions (b) (as defined in Table 1)
Fig. 4
Fig. 4
Multidimensional scaling plot based on ΦST (Tajima-Nei distances) values between examined populations of Carcinus aestuarii
Fig. 5
Fig. 5
Bayesian skyline plot for the two genetically defined groups of Carcinus aestuarii, as identified by SAMOVA; a: group 1; b: group 2. Populations, defining both geographic groups, are reported in the results and in Table 5 (K=2). BSP plots showing changes in effective population size (Ne) over time (measured in years before present). The thick solid line depicts the median estimate, and the margins of the blue area represent the highest 95% posterior density intervals

Similar articles

Cited by

References

    1. Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, et al. Evaluating signatures of the glacial refugia for North Atlantic benthic marine taxa. Ecology. 2008;89:108–122. doi: 10.1890/08-0257.1. - DOI - PubMed
    1. Berg PR, Jentoft S, Star B, Ring KH, Knutsen H, Lien S, et al. Adaptation to low salinity promotes genomic divergence in Atlantic cod (Gadus morhua L.). Genome biol. Evolution. 2015;7(6):1644–1663. - PMC - PubMed
    1. Godhe A, Egardt J, Kleinhans D, Sundqvist L, Hordoir R, Jonsson PR. Seascape analysis reveals regional gene flow patterns among populations of a marine planktonic diatom. Proc Royal Soc B. 2013;280:20131599. doi: 10.1098/rspb.2013.1599. - DOI - PMC - PubMed
    1. Patarnello T, Volckaert FAM, Castilho R. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographic break? Mol Ecol. 2007;16:4426–4444. doi: 10.1111/j.1365-294X.2007.03477.x. - DOI - PubMed
    1. Pérez-Losada M, Nolte MJ, Crandall KA, Shaw PW. Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol Ecol. 2007;16:2667–2679. doi: 10.1111/j.1365-294X.2007.03333.x. - DOI - PubMed

Publication types

LinkOut - more resources