Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr 10:13:14.
doi: 10.1186/s13027-018-0186-5. eCollection 2018.

Extra-telomeric functions of telomerase in the pathogenesis of Epstein-Barr virus-driven B-cell malignancies and potential therapeutic implications

Affiliations
Review

Extra-telomeric functions of telomerase in the pathogenesis of Epstein-Barr virus-driven B-cell malignancies and potential therapeutic implications

Silvia Giunco et al. Infect Agent Cancer. .

Abstract

The Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus causally linked to a broad spectrum of both lymphoid and epithelial malignancies. In order to maintain its persistence in host cells and promote tumorigenesis, EBV must restrict its lytic cycle, which would ultimately lead to cell death, selectively express latent viral proteins, and establish an unlimited proliferative potential. The latter step depends on the maintenance of telomere length provided by telomerase. The viral oncoprotein LMP-1 activates TERT, the catalytic component of telomerase. In addition to its canonical role in stabilizing telomeres, TERT may promote EBV-driven tumorigenesis through extra-telomeric functions. TERT contributes toward preserving EBV latency; in fact, through the NOTCH2/BATF pathway, TERT negatively affects the expression of BZLF1, the master regulator of the EBV lytic cycle. In contrast, TERT inhibition triggers a complete EBV lytic cycle, leading to the death of EBV-infected cells. Interestingly, short-term TERT inhibition causes cell cycle arrest and apoptosis, partly by inducing telomere-independent activation of the ATM/ATR/TP53 pathway. Importantly, TERT inhibition also sensitizes EBV-positive tumor cells to antiviral therapy and enhances the pro-apoptotic effects of chemotherapeutic agents. We provide here an overview on how the extra-telomeric functions of TERT contribute to EBV-driven tumorigenesis. We also discuss the potential therapeutic approach of TERT inhibition in EBV-driven malignancies.

Keywords: B-cell malignancies; Epstein-Barr virus; Latent/lytic viral cycle; TERT extra-telomeric functions; Telomerase.

PubMed Disclaimer

Conflict of interest statement

Not applicable.Not applicable.The authors declare that they have no competing interest.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
TERT levels affect EBV latent/lytic status. A, cross-talk between EBV and TERT to sustain viral latency program: in EBV-infected primary B lymphocytes, activation of TERT occurs concomitantly with induction of latent EBV proteins and down-regulation of EBV lytic gene expression. EBV-encoded LMP-1 activates TERT at transcriptional level via NF-κB and MAPK/ERK1/2 pathways. In turn, TERT expression activates NOTCH2 at transcriptional level via NF-κB pathway. NOTCH2 activates BATF, which negatively affects the expression of BZLF1, a master regulator of viral lytic cycle, thus favouring induction and maintenance of EBV latency program, essential for EBV-driven transformation. Immunohistochemical image: TERT (a, b) and BZLF1 (c, d) protein expression in early- (a, c) and late- (b, d) infected B lymphocytes (X40). B, TERT or NOTCH inhibition triggers EBV lytic cycle: TERT silencing by shRNA (shTERT) or inhibition of NOTCH signaling by γ-secretase inhibitors lead to NOTCH2-dependent down-regulation of BATF and up-regulation of BZLF1, inducing a complete EBV lytic cycle. Immunohistochemical image: EBV lytic gp350 protein expression in EBV-positive BL cells untreated (a) and treated (b) for 72 h with shTERT (X20). Scale bar, 100 μm. See the text for details

Similar articles

Cited by

References

    1. Dolcetti R, Dal Col J, Martorelli D, Carbone A, Klein E. Interplay among viral antigens, cellular pathways and tumor microenvironment in the pathogenesis of EBV-driven lymphomas. Semin Cancer Biol. 2013;23:441–456. doi: 10.1016/j.semcancer.2013.07.005. - DOI - PubMed
    1. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–768. doi: 10.1038/nrc1452. - DOI - PubMed
    1. Gloghini A, Dolcetti R, Carbone A. Lymphomas occurring specifically in HIV infected patients: from pathogenesis to pathology. Semin Cancer Biol. 2013;23:457–467. doi: 10.1016/j.semcancer.2013.08.004. - DOI - PubMed
    1. Yajima M, Kanda T, Takada K. Critical role of Epstein-Barr virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol. 2005;79:4298–4307. doi: 10.1128/JVI.79.7.4298-4307.2005. - DOI - PMC - PubMed
    1. Montone KT, Hodinka RL, Salhany KE, Lavi E, Rostami A, Tomaszewski JE. Identification of Epstein–Barr virus lytic activity in post-transplantation lymphoproliferative disease. Mod Pathol. 1996;9:621–630. - PubMed