Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar 25;263(9):4381-5.

Guanosine triphosphate promotes the post-translational integration of opsin into the endoplasmic reticulum membrane

Affiliations
  • PMID: 2964448
Free article

Guanosine triphosphate promotes the post-translational integration of opsin into the endoplasmic reticulum membrane

K E Hoffman et al. J Biol Chem. .
Free article

Abstract

Membrane integration of a nascent opsin polypeptide was examined to determine whether insertion of proteins into the endoplasmic reticulum is dependent upon energy provided by ribonucleotide triphosphate hydrolysis. A discrete-sized nascent chain was obtained by in vitro translation of a mRNA which lacked a termination codon yet encoded the first 156 residues of bovine opsin. Ribosomes bearing the newly synthesized opsin chains were post-translationally incubated with canine pancreas microsomal membrane vesicles after addition of exogenous ribonucleotides or ribonucleotide analogues. Post-translational membrane integration and glycosylation of the 156-residue nascent polypeptide was found to require either the presence of guanosine triphosphate or a nonhydrolyzable GTP analogue. ATP did not promote post-translational integration of the nascent polypeptide. Although ribonucleotide hydrolysis was not obligatorily required for integration of opsin, we observed an increase in the proportion of glycosylated opsin chains in post-translational incubations that contained hydrolyzable ribonucleotide triphosphates. We conclude that a GTP-binding protein performs an essential role during integration of opsin into the endoplasmic reticulum.

PubMed Disclaimer

Publication types

LinkOut - more resources